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Abstract: The study describes a physical model of vibrating microtubules in living cells, presented as strings and bars. 
Calculated are proper-frequencies of first four vibration modes of transverse and longitudinal waves on microtubules. For 
microtubules with length 1-30µm and shear modulus 5.0×106 N/m2 the proper-frequencies of standing transverse waves fall 
in diapason of 1×103 - 5×107 Hz. For microtubules with same length and Young’s modulus 108–109 N/m2 the 
proper-frequencies of standing longitudinal waves fall in diapason of 5×106 - 3×109 Hz. These calculated diapasons of 
frequencies overlap with experimentally registered diapasons of frequencies of mechanical and electric vibrations in bacteria, 
yeast cells, erythrocytes, infuzorii and soma cells. Some theoretical problems related to the present model are discussed.  

Keywords: Microtubules, String, Bar, Frequency, Transverse, Longitudinal, Waves 

 

1. Introduction 

The living cells and their structures have vibrations in all 
frequency diapason - mechanical, acoustical, electrical, 
electromagnetic, ultraviolet, infrared and visible [1, 2, 3, 4]. 
By vibration, the living cells can transfer mass, energy and 
information (signals) between them and inside [5, 6]. 
Endogenous mechanical and electromechanical vibrations 
of some cell structures like membranes and microtubules 
may have fundamental function in organization of living 
organisms, including intensity of biochemical reactions, cell 
growth and building of morphological structures, cellular 
transport, long range control of cellular functions and sensor 
functions in cells [7, 8, 9, 10, 11]. The microtubules 
determine the topology of the cells during the entire cell 
cycle [12, 13]. Certain authors attribute the participation of 
microtubules in the logical functions of the brain and 
consciousness [14, 15]. The possibility that microtubules 
carry power and information by mechanical and 
electromechanical vibration of their building 
macromolecules is under investigation. In this regard 
various theoretical models have been made, connecting the 
modes of measured vibrations emitted by the cells with the 
function of the microtubules. In the same sense, the aim of 
this study is i) to calculate the modes of mechanical 

vibrations in microtubules, using model in which they are 
presented as strings and bars and ii) to compare the 
calculated frequencies with experimentally measured 
frequencies of mechanical and electromechanical vibrations 
and signals emitted from living cells. 

2. Experimentally Registered 

Mechanical and Electrical Vibrations 

and Signals Emitted from Living 

Cells 

The experimentally registered vibrations and signals are 
received predominantly on some type of cells (bacteria, 
yeast, infuzorii, erythrocytes and soma cells). 
Experimentally measured frequencies of mechanical and 
electrical vibration in these types of cells don’t exceed 107 

Hz, despite of that the calculated frequencies in theoretical 
models of other authors reach till to 1011 Hz  [7, 16, 17, 18]. 
However, the external electric and electromagnetic fields 
(microwaves) with frequencies 105 -1011 Hz have clear 
expressed non-thermal biological effect on cells, tissues and 
organisms [19, 20, 21] showing that the cells and their 
structures are capable of absorbing and resonate the 
vibration in this frequency range. 
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2.1. Bacterial Cells 

Matsuhashi et al. [22] have measured production of sound 
waves by bacterial cells and the response of bacterial cells to 
sound. Some bacterial cells like Escherichia coli, Proteus 

vulgaris, Bacillus subtilus, Streptococcus lauceliedis gr. B 
and Neisserra gonorrahae are very sensitive to vibrations in 
the range of 9000-9045 Hz. The bacteria E. coli death after 
60 minutes treatment at vibrations with frequency 9000 Hz 

[23]. A frequency about 9 kHz has lethal effect on 
bacteriophages [9]. Reguera [4] has discussed the role of 
mechanical (acoustic) vibration on microbial cell-cell 
communications, and arises the hypothesis that these 
vibrations can be base of informational exchange (signals) 
between living cells. 

2.2. Yeast Cells 

Pokorný et al. [17] have suggested that the metabolic 
processes drive microtubules in yeast Saccharomyces 

cerevisiae to vibrate at MHz frequencies. A subsequent 
paper reported weak narrowband electrical signals from 
these cells at frequencies between 8-9 MHz. 

Local nanomechanical membrane motion with amplitude 
of oscillations 3-4 nm of yeast cells was measured by Pelling 
et al. [24]. They found oscillations fall in the frequency 
range of 0.9 -1.6 kHz. These frequencies were temperature 
dependent. The temperature, which modulates the metabolic 
activity of the cells and its intracellular vibrations, affected 
the specific frequencies, but not the intensity of the yeast’s 
oscillatory motion. After application of sodium azide, which 
switches off ATP production in the mitochondria, but does 
not change the mechanical properties of the cell membrane, 
the cells do not display oscillatory motion. 

Later, Cifra et al. [25] have measured local 
nanomechanical oscillations of synchronized yeast cells 
(cold sensitive beta-tubulin mutant of Saccharomyces 

cerevisiae) in the range of 0- 3 kHz. The same authors have 
measured electrical oscillations of these cells in the 
frequency bandwidth from 1280 to 1400 Hz. The authors 
supposed that, if the vibrations are exited in the cytoskeleton, 
they may cause vibration of the cell membrane, because of 
the bonding of cytoskeleton to the cell membrane. Jelínek et 
al. [27] discussed the possibility of using of device to detect 
electromagnetic emission of yeast cells at frequency of 
about 42 GHz. 

Pokorný et al. [3] have measured on the synchronized 
yeast cells (cold sensitive beta-tubulin mutant) mechanical 
vibrations of the yeast membranes, at about 800 Hz at the 
temperature of 28°-30°C. The same authors have detected 
electrical oscillations in the frequency range of 400-1600 Hz 
in synchronized and non-synchronized yeast cells. 

2.3. Erythrocytes 

Nanoscale oscillations of membranes of human 
erythrocytes with frequency up to 30 Hz were measured by 
point dark spectroscopy [27, 28, 29]. The dominant 
component of membrane fluctuations is metabolically 

excited and depends on a dynamic mechanochemical 
coupling of the membrane-skeleton network [30]. 
Oscillations of the membrane of erythrocytes are correlated 
in a certain time period and conditioned by energy supply 
(from intracellular MgATP). The actin’s ATPase, located at 
the end of short actin filament in spectrin submembrane 
skeleton, is responsible for the MgATP stimulation of red 
blood cell fluctuations. Mechanism of transformation of 
chemical to vibration energy is not yet revealed. Levin and 
Korenstein [27] conclude that the low frequency fluctuations 
of the cell membrane in erythrocytes may be a general 
property of all living cells. Interactions between red blood 
cells up to a distance of about 1 µm were observed by 
Rowlands [31]. These interactions are metabolically 
dependent and are weakened or disappears if the cell 
membrane is disorganized or if the quasi-static membrane 
potential is considerably lowered. 

2.4. Infuzorii 

Mechanical vibrations in diapason of 1.2-7.2 kHz can 
rupture the cell structures of infuzorii Paramecium caudatus, 
P. bursaria, P. solkensi, P. aurelia and P. trichium [32]. In 
review paper of Romanoff [9] is shown that there is a 
resonance mechanism of influence of the mechanical and 
acoustic vibrations on the cell structures of infuzorii.  

3. Effects of Electromagnetic Fields on 

Microtubules and Cells 

3.1. Effect of External Electric Field on Microtubules 

Kirson et al. [33] have showed that the electric vibrations 
with frequencies about 105 Hz can disrupt the mitotic spindle 
of the soma cells. The organization of the mitotic spindle in 
the cytokinetic phase of cell division can be disturbed by 
external electric field with intensity of 100-200V/m and 
frequency of 100-300 kHz, accordingly data by Kirson et al. 
[34] and Cucullo et al. [35]. The forces exerted by the 
external field on tubulin-heterodimers prevent their correct 
orientation and attraction to the close vicinity of the tip and, 
therefore disrupt polymerization of microtubules. The cells 
(e.g. melanoma cells) are arrested in mitosis by external 
electric field and/or the cells are disintegrated [3]. Minoura 
and Muto [36] have showed that the electric signals with 
intensity of electric field 5×104 -1.9×105 V/m and 
frequencies of 1×104 -3×105 Hz can oriented microtubules 
parallel to the field line, because of the high dipole moment 
induced along their long axis.  

3.2. Effect of Microwaves on Microtubules and Cells 

Microwaves are part of the electromagnetic spectrum 
ranging in frequency from 3×108 to 3×1011Hz. This 
non-ionizing electromagnetic radiation is absorbed at 
molecular level and manifests as changes in vibration energy 
of the molecules or heat [19, 20, 21]. The non-thermal 
absorption of microwaves is a resonant that is consequence 
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of the resonant interaction of the electromagnetic field with 
the intrinsic cell and tissue oscillators.  There are many 
experiments which indicate electrodynamic activity of 
variety of cells, expecting the microtubules to be the source 
of this activity [37, 38]. Because of the microtubule’s 
subunits (tubulin-heterodimers) are elementary electric 
dipoles, the vibration of microtubules generate 
electromagnetic field around space [39]. Instead of that the 
radiation rate of the single cell is lower than 10-20W, the 
interactions of external electromagnetic field with cell’s 
oscillators have macroscopic biological effects on cells 
membranes, tissues and hole organisms in frequencies 
between 30GHz and 80GHz [19, 20, 40]. For example, 
microwaves in the frequency diapason of 54-76 GHz affect 
conductance, capacitance and ion transport across lipid 
bilayer of cell’s membranes as well as the ionic channel 
current in cells [41]. At 41.8 GHz the microwaves affect 
growth rate of yeast cells [21]. The mechanism of action of 
external electromagnetic field on cells could be based on 
forced-vibration of free ions on both sides of plasma cell 
membrane [42].  

4. Some Structural, Elastic, Electric and 

Vibration Characteristics of 

Microtubules 

Microtubules are the main constituents of the cellular 
cytoskeleton together with microtubule associated proteins, 
intermediary and actin filaments. Microtubules are 
dynamical instability structures because of it leads to 
reorganization of the cytoskeleton and therefore cellular 
morphology and functions. However, in highly 
differentiated cells like neurons there is a stable population 
of cytoskeletal microtubules. In most cells the majority of 
microtubules emanate from a microtubule-organizing center 
(centrioles) and radiates to the membrane and other 
structures of cells [12, 13]. Microtubules are cylindrical 
polymers composed from tubulin dimers molecules with 
protein density ~1250 kg/m3 [43]. Porter et al. [18] have 
calculated the microtubules density to be about 1000 kg/m3. 
Each tubulin subunit is an 8 nm by 4 nm by 5 nm 
heterodimer which consists of two slightly different classes 
of 55,000 dalton monomers known as alpha and beta tubulin 
[44, 45]. The tubulin dimer subunits within microtubules are 
arranged in a hexagonal lattice. Microtubules cylinder are 
comprised of 13 longitudinal protofilaments. They resemble 
hollow tubes with 15 nm inner and 25 nm of outer diameter 
[46]. Microtubules are rigid polymers that contribute the 
mechanical and elastic properties of cells. Microtubules 
resist various internal and external forces to maintain cell 
shape and they support motor proteins to generate the force 
required for cell movement and changes in shape. The most 
important elastic characteristics of single microtubule are 
rupture stress modulus, about 0.4-0.5 N/m2 [47, 18]; shear 
stress modulus, in the range of  5.0×106 N/m2 [48, 49]; 

shear modulus between microtubules in intact cells, about 
103 N/m2 [50]; Young’s modulus, between 106 -109 N/m2 [48, 
50]; flexural rigidity of microtubules (34-62)×10-24 Nm2 [51], 
elastic coefficients of microtubules, in the range of 10-2 - 4.5 
N/m [18], bending modulus for individual microtubules 
7×10-23 Nm2 [50]; average midpoint bending stiffness of 
intact cells 7×104 N/m [50], spring constant, about 0.1 N/m 
[52, 53] and others. Microtubules have an anisotropic 
structure, because of the longitudinal interactions between 
alpha and beta tubulin-subunits. Along protofilaments the 
microtubules are relatively stronger than the lateral 
interactions (in circumferential direction). As a consequence 
of this anisotropic structure the ratio between Young’s 
modulus and shear modulus of microtubules varies between 
10 -106 folds [48, 54; 55]. Some microtubules are over a 
hundred microns long, while others are only a single 
microns or even shorter [56, 57]. The persistent length of 
microtubules is about 6mm [58]. The microtubules high 
stiffness on length scales associated with the cell size aids in 
their role of maintaining mechanical stability of the cell. 
Microtubules are highly polar structures. Minoura and Mito 
[36] infer from dielectric measurements a net charge of 
tubulin’s molecules to be 10-20 negative electron’s charges 
per tubulin-dimmer, which corresponds to 3250e- - 32 500e- 
charges per µm length of the microtubules. Sträcke et al. [59] 
estimate the lower linear charge density of tubulin molecules 
to be minimum 280 e-/µm. Each tubulin-subunit has an 
electrical dipole moment of 1740 Debye. These high charge 
density and dipole moment of microtubules allows an active 
directional control of microtubules by internal and external 
electric fields [55, 60].  

Microtubules have many static, dynamic and vibration 
properties. Firstly, Fröhlich [7] suggested that by means of 
strong fluctuations of membrane electrical field and its 
coupling with the highly polarizable membrane and cell 
structure, typical vibration with frequencies related to 
optical phonons would lie in the GHz-THz region. Later, 
many investigators like Sirenko et al. [16], Pokorný et al. 
[17], Porter et al. [18], using others theoretical models, have 
calculated the modes of mechanical and electromechanical 
vibrations (longitudinal, radial and torsion) in the 
microtubules to fall in the range of 107 – 1011 Hz, with 
velocities of phonons in the range of 100-1300 m/s, and 
wavelength in the range of 10-5 -10-9 m [16, 17, 18]. One 
problem exists, that the predicted frequencies in these 
theoretical models still await experimental confirmation. 
The other problem is, that the calculated modes of vibrations 
and corresponding frequencies differs some orders of 
magnitude from experimentally measured mechanical and 
electrical vibration in cells (predominantly, in bacteria, yeast 
cells and erythrocytes). The registered mechanical 
vibrations fall mainly in low-frequency diapason of 30- 106 

Hz [61, 62], while the registered electromechanical 
vibrations fall predominantly in high-frequency diapason of 
107 - 1010 Hz and over [17, 26, 37, 62]. 
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5. Models and Modeling 

Various approximations and models have been used to 
determine microtubule vibration modes [63, 64]. In more 
models, the microtubules are presented as a cylinder, 
cylindrical shells or tube [53, 64]. Amos [65] and Pokorný et 
al. [17] used model of microtubules as a lattice of monomers, 
while the other authors like Metoz et al. [66] and Porter et al. 
[18] used model of microtubules as a lattice of dimmers. 
Using the elastic and electric characteristics of microtubules 
and tubulin-dimers, predominantly the stretching, 
longitudinal, torsional, breathing and beam-bending modes 
are calculated [17, 63, 67]. Saha et al. [68] considers the 
possibility of stochastic resonance in tubulin- dimmers. 
Because of viscosity of cytoplasm the exited vibrations 
dissipate part of energy, which tend to damp out the 
vibrations [69].  

From most common physical observations, because of the 
time of relaxation of water molecules is about 10-13s [52], 
the viscous damping of microtubules vibrations would 
depend on the difference between the frequency of vibration 
of microtubules and the frequency of relaxation of the water 
molecules. This means that with the approaching of the 
vibration frequencies of the microtubules to the frequency of 
relaxation of the water molecules, the viscous dumping will 
increase. Longitudinal (axial) modes are expected to have 
the lowest viscous damping due to smallest displacement of 
surrounding water, which is present in vivo, and viscoelastic 
transition of cellular water [64].  However, the 
experimentally registered cell vibration modes in the range 
of 30 -107 Hz show that viscous dumping is not able to 
dissipate fully vibration of the cells in this relatively 
low-frequency diapason. The lack of experimentally 
registered vibrations over 107 Hz perhaps, is due to viscous 
dumping, but it is possible that the cells do not have enough 
energy to cause vibration of this frequency. For example, 
radiations of cells with microwaves at 30-80 GHz (which 
lead to non-thermal effects in cells) have shown that the cell 
structures can vibrate in this frequency diapason in the 
presence of sufficiently intensive energy source. 

Our model represent a classical model, based on theory of 
mechanical vibrations of string and bars, by which can be 
calculated the natural frequencies of vibration and standing 
waves modes [70] on the tubules. In the model is not taken 
under consideration the viscous dumping of vibrations.  

Arguments that allow us to present microtubules by 
strings and bars are connected to their geometric and elastic 
characteristics: i/ the big persistent length of microtubules, 
about 6mm [58]; ii/ the big ratio between length and external 
diameter of microtubules. For example: the ratio between 
length of microtubules, equals to minimum and maximum 
length of eukaryotic cells (1- 30µm) and external (outer) 
diameter of microtubules (25 nm)  is 102 -103 fold; iii) 
microtubules are presented like fixed to the membrane or  

 

Figure 1.  Schematic presentation of microtubules in cells like strings and 

bars: A(a,b)-microtubules fixed to microtubules-organizing center 

(centrioles) or to membrane of the cells; A(c)- scheme of standing waves on 

microtubules for 1, 2, 3 and 4 mode; B(a,b)-microtubules fixed to the 

microtubule-organizing center (centriole) or to the membrane; 

B(c,d)-scheme of standing waves on microtubule-bar. Figure legend: 

C-centriole, M-membrane, m-microtubules. 

microtubule-organizing center (centrioles) [71] anisotropic 
strings and bars with length- L( m), surface area of S (m2), 
shear modulus of Ғsh (N/m2), Young’s modulus of Ғy (N/m2) 
and density of ρ (kg/m3)- Fig. 1. 
The role of vibrator, which excite vibration of microtubules, 
can be every one from the commonly accepted and 
discussed in the scientific literature energizing source of the 
microtubules - mechanical vibration and electric field of the 
membrane, efflux of energy from mitochondria to 
microtubules, external mechanical and electromagnetic 
waves, ATP sources and others [64].  

Accordingly Newton’s equation [70, 72] the speed of a 
wave v (m/s) of excited vibrations on string and bar is equals 
to: 

  v=(Ғ/ρ)½                                         (1) 

where Ғ is the elastic modulus of the string or bar. 
For transverse waves, the elastic modulus Ғ is equals to 

the shear modulus Ғsh and Eq.(1) gives the form. 

v=(Ғsh/ρ)½                                       (2) 

For longitudinal waves, the elastic modulus Ғ is equals to 
the Young’s modulus Ғy and Eq.(1) gives the form: 

v=(Ғy/ρ)½                                      (3) 

The relation among the speed of the waves v(m/s), the 
wavelength λ(m) and frequency f(Hz) of vibration is given 
by the ratio: 

λ=v/f                           (4) 

To simplicity the model we consider harmonic (sinusoidal) 
waves on microtubules, which vibrate independently each 
from other.   
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6. Theory and Calculation of Vibration 

Modes of Transverse Waves on String 

and Bar 

6.1. Theory of Transverse Waves on Microtubules-String 

Let us consider that the microtubules are presented as 
strings. The waves traveling to the strings will be 
particularly reflected to solid walls and a large fraction of the 
energy will be reflected. As a result, a standing waves will be 
formed with nodes (the points of zero motion) placed on 
solid walls -membranes or centrioles of the cell (see Fig.1). 
When the vibrator, pushes in resonance with the wave pulses 
on the strings, a large standing waves will be formed. Our 
purpose is to calculate the vibration modes and 
corresponding proper frequencies of standing transverse 
waves traveling to the microtubule-string. Let us now 
consider that the cells and resonating microtubules have the 
same length equals to L(m), accordingly Fig.1A(a, b).The 
distance between adjacent nodes is λ/2.  As a result, the 
strings can resonate when its length (L) is equal a whole 
number (n) of half wavelengths (λ/2) long: 

  L=nλ/2 where n=1, 2, 3,…..            (5) 

Since the wavelength is related to the frequency by Eq. 4, 
we see at once that a string of fixed length (L) will resonate 
with resonant frequencies (f, Hz) as function of mode (n) 
given by relation: 

f(n) =v/(2L/n)=n(v/2L) where n=1, 2, 3 etc. is mode’s 
number                                     (6) 

In Equation (6) the speed of waves v (m/s) is computed by 
Eq.2. The first four vibration modes on strings are indicated 
in part ‘c’ of Fig.1A.   

6.2. Theory of Transverse Waves on Microtubules-Bar. 

Let us now consider that the microtubules are presented as 
bars. If a bar clamped at its center is struck at its end, as 
shown in Fig.1B(b), the microtubule-bar will vibrate. The 
mode of vibration is indicated in part ‘c’ of Fig.1B. The 
center of the bar must be a node, because it is tightly 
clamped in place. Since the ends of the bar are not held 
rigidly, we expect antinodes near them. If we assume the 
ends to be antinodes, the length of the bar L(m) is one-half 
wavelength λ/2, because of the distance between two 
successive antinodes is λ/2. Knowing that λ= 2L, we could 
calculate the frequency f (Hz) of vibration of the bar, if the 
speed of waves (computed by Eq.2) is equals to v(m/s):   

 f=v/2L                         (7) 

If the bar had been clamped as in Figure 1B(a), at a 
distance L/4 from its end, the vibration would have appeared 
as in part ‘d’ of Fig.1B. Once again, the ends would 
approximate antinodes, and the clamp point would be a node. 
In this case λ=L and the frequency of vibration can be given 

by the relation: 

  f=v/L                        (8) 

6.3. Calculation of Vibration Modes of Standing 

Transverse Waves on Microtubules Presented as 

Strings and Bars. Comparison with Experimental 

Data 

Because of many experimental data for mechanical 
vibration are made on yeast cells, we give the length of 
microtubules to be in order of length of this type of cells. 
Accordingly Tyson et al. [73] the length of yeast at birth 
varied in interval of 5-14 µm, while the length of yeast at 
division is between 10-28µm. Accordingly Fantes [74] the 
mean diameter of yeast cells is 3.5 µm.  In our model we 
gives the length of microtubules L(m) to fall in window of 
1-30µm.  

The microtubules-strings can resonate when its length (L) 
is equal a whole number (n) of half wavelengths (λ/2) long, 
accordingly equation L=n λ/2. On Figure 1A(c) are shown 
wavelength of standing waves on microtubules for modes 
n=1, n=2, n=3 and n=4. (For n=1 the wavelength is λ=2L; 
for n=2 the wavelength is λ=L; for n=3 the wavelength is 
λ=2L/3 and for n=4 the wavelength is λ=L/2). 

Giving in the mind that length of strings is equal to 1-30 
µm, for n=1 the calculated wavelength will be: 

λ=2L=(2-60)µm                (9) 

For transverse waves, the elastic modulus is equals to 
shear modulus Ғsh= 5.0-1×106 N/m2 [48, 49]. For density of 
microtubules ρ = 1250 kg/m3 the speed of waves on strings 
and bars will be in interval of: 

v=(Ғsh/ρ)½=(6.324×10-2–28.3)m/s       (10) 

where the speed  6.324×10-2 m/s corresponds to low value 
of shear modulus  Ғsh= 5.0 N/m2 and the speed 28.3 m/s 
corresponds to high value of shear modulus Ғsh=1×106 
N/m2. 

For λ =2L for first mode n=1 of strings and bar clamped at 
its center, the resonant frequencies f(n) given by Eq.6 will be 
in interval given by the equation: 

f(1)=v/2L=(6.324×10-2/λ–28.3/λ)m/s    (11) 

For λ =2µm, the calculated frequencies fall in the interval 
of: 

f(1)=(3.162×104–1.415×107)Hz          (12) 

For λ =60µm, the calculated frequencies fall in the 
interval of: 

f(1)=(1.054×103–4.714×105)Hz         (13) 

For bar clamped at a distance L/4 from its end, the 
diapason of frequencies will be 2 fold higher than for strings 
i.e.: 

f(1)=(6.324×104–2.83×107)Hz          (14) 
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and 

f(1)=(2.108×103–9.428×105)Hz        (15) 

For modes n= 2, 3, 4 of strings, the calculated frequencies 
f(2), f(3) and f(4) will be 2, 3 and 4 fold higher than the basic 
frequency-f(1). The all calculated vibration modes and 
corresponding frequencies of transverse waves for first four 
modes for strings and bars are given in Table 1. 
For modes n=1, 2, 3, 4 and low shear modulus of Ғsh=5.0 
N/m2, the calculated on Table 1 interval of frequencies 
(1×103 - 3×104 Hz) of transverse waves overlaps with 
experimentally registered interval of frequencies (103 -104 
Hz) of mechanical and electric vibrations from bacteria, 
yeast and infuzorii [3, 4, 9, 23, 24, 25, 32, 61]. The 
calculated interval of frequencies includes also the 
frequencies (1×104 -3×105Hz) of external electric signals 
and fields (with intensity 5×104 -1.9×105 V/m) that can 
disrupt the mitotic spindle of the cells in the cytokinetic 
phase of cell division [ 33, 34, 35, 36]. Indeed, the 
tubulin-subunits has minimum electric charge equals to ten 
electron charges q =10e- and rupture modulus of  Ғr = 
0.4-0.5 N/m2 [18, 47].   

Table 1. Calculation of vibration modes and proper- frequencies of 

standing transverse waves on microtubules-strings and bars 

Mode 

number 

n 

Shear modulus 5.0 N/m2 

(speed of waves 6.32×10-2 

m/s) 

Shear modulus 1×106 N/m2 

(speed of waves 28.2 m/s) 

For L=1µm For L=30µm For L=1µm For L=30µm 

(λ=2µm) (λ=60µm) (λ=2µm) (λ=60µm) 

1. 3.14×104 Hz 1.05×103 Hz 1.41×107 Hz 4.75×105 Hz 

2. 6.32×104 Hz 2.10×103 Hz 2.87×107 Hz 9.50×105 Hz 

3. 9.48×104 Hz 3.15×103 Hz 4.24×107 Hz 14.25×105 Hz 

4. 12.65×104 Hz 4.20×103 Hz 5.66×107 Hz 19.00×105 Hz 

The mitotic spindle can be disrupted if the ratio between 
electric force (Fe) acting on tubulin-dimers with surface area 
of s =2.0×10-17 m2 (or acting on single microtubules with 
surface area of S=6.25×10-16 m2) is higher than value of 
rupture modulus Ғr i.e. must be met inequalities: i) Fe/s > Ғr 
and ii) Fe/S> Ғr.  

The electric force (Fe) is equals to product between 
electric charge (q, C) of tubulin-dimers (q=10e- =16×10-19C) 
and intensity of external electric field (E ~200V/m), acting 
on microtubules i.e: Fe = qE =3.2×10-16N. For calculated 
electric force Fe ~3.2×10-16 N, the ratio between the force 
and surface area of tubulin-dimer Fe/s (and ration between 
the force and surface area of microtubules Fe/S) fall in the 
interval of F/S –F/s = 0.512 -20 N/m2. The comparison 
shows that the equations i) and ii) are valid, i.e.  F/S ≈ Ғr 
≈0.512 N/m2 and F/s =20 N/m2 > Ғr. The equations i) and ii) 
show than the intensity of external electric field is sufficient 
to disrupt microtubules. The frequency of external 
destroying electric field (5.0×105 Hz) is near to the 
frequency (3×105 Hz) of calculated mechanical vibration of 
microtubules. 

The assumption of a number of authors [7, 8, 9, 10] that 
the vibrations of microtubules may act on intensity of 
biochemical reactions allow as to assume, that the maximum 
frequencies of mechanical vibration of microtubules don’t 
exceed the maximum frequencies of mechanical vibration of 
enzyme molecules in cells ~ 107 Hz  [11]. 

For modes n=1, 2, 3, 4 and high shear modulus Ғsh =106 
N/m2, the calculated on Table 1 interval of frequencies 
(5×105 - 5×107 Hz) are near to maximum frequencies of 
mechanical vibration of enzyme molecules ~ 107Hz and 
include the experimentally registered frequencies of electric 
signals (8-9 MHz) in yeast cells, due to the metabolic 
processes in yeast [17].  

In summary, calculated interval of frequencies of 
transverse mechanical waves on microtubules fall in 
relatively low-frequency diapason (1×103-5×107 Hz) in 
which are located the frequencies of the vibrating enzyme 
molecules. This interval is about 104 -108 folds lower than 
predicted maximum frequencies of vibrating cell structures 
and microtubules ~1011 Hz, calculated from Fröhlich [7, 8], 
Sirenko et al. [16], and Cifra et al. [37, 62].   

7. Theory and Calculation of Vibration 

Modes of Longitudinal Waves on 

String and Bars 

7.1. Theory of Longitudinal Waves on 

Microtubules-Strings 

Waves where the motion of the particles is along the 
direction of wave propagation, is called a longitudinal wave. 
If a compressive or extensive wave is sent down a string, the 
wave and its energy are usually reflected at the end of the 
string. This reflected wave can interfere with the later waves 
being sent down string from the source. If the proper relation 
is maintained between the frequency of the driving source 
oscillating the end of the string and the various parameter 
parameters of the string, resonance will occur. The 
resonating cellular membranes or centrioles can play role of 
driving source. As with resonance on a string, the position of 
the driving source will be closed to a node. If the other end of 
the string is fixed solidly to a wall (membrane) or some other 
cellular object (centriole), that end must also be a node. The 
resonance motion of the string must then appear as shown in 
the graphs of Fig.1. The distance between adjacent nodes is 
λ/2. Also, at resonance, the strings must be a whole number 
of half wavelengths long. That is in resonance the ratio 
between length of string L(m) and wavelength λ(m) of 
standing wave will be: 

L=nλ/2   where n=1,2,3,4…            (16) 

This relation, when combined with the relation between 
wavelength and frequency (λ=v/f), tell us at once the string 
resonance frequencies will be: 

f(n)=n(v/2L)   where n=1,2,3,4…          (17) 
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For longitudinal waves the elastic modulus is equals to 
Young’s modulus (Ғy) and the speed of waves will be: 

v =(Ғy/ρ)½                               (18) 

7.2. Theory of Longitudinal Waves on Microtubule-Bar 

The elastic bar acts like a very stiff string. The blow on the 
end of the bar sends a compressive or extensive wave down 
the bar. This wave is quite complex in form and is actually a 
large group of waves of various frequencies. The bar will 
resonate to only certain frequencies and hence it selects the 
proper frequency to which it will resonate. The wave in the 
bar must have a node at its center and antinodes at its end. 
The lowest resonant frequency mode of motion is shown on 
Fig.1B (c). In this case the bar is one-half wavelength long 
i.e. L= λ/2 (Fig.1B (b). If the speed v(m) and wavelength 
λ(m) of waves are known, the frequency of vibration can be 
computed by ratio: 

f=v/λ=v/2L                     (19) 

For longitudinal waves, the elastic modulus is equals to 
the Young’s modulus and the speed of waves will be: 

v=(Ғy/ρ)½                        (20) 

If the bar had been clamped as in Fig.1B (a), at a distance 
L/4 from its end, the vibration would have appeared as in 
part ‘d’ of Fig. 1. Once again, the ends would approximate 
antinodes, and the clamp point would be a node. In this case 
λ=L and the frequency of vibration can be given by the 
relation: 

 f=v/L                       (21) 

7.3. Calculation of Vibration Modes of Standing 

Longitudinal Waves on Microtubules Presented as 

Strings and Bars. Comparison with Experimental 

Data 

Giving in the mind that the Young’s modulus of 
microtubules is in interval of 108 -109 N/m2 [48, 55] and the 
density of microtubules is about 1250 kg/ m3, we can 
calculate the diapason of speed of longitudinal waves on 
strings and bars: 

v=(Ғy/ρ)½ =(2.828×102–8.944×102)m/s      (22) 

In relation (22) the speed 2.828×102 m/s corresponds to 
low Young’s modulus 1×108 N/m2 , while the speed 
8.944×102 m/s corresponds to high Young’s modulus 1×109 

N/m2 of microtubules. 
The strings can resonate when its length (L) is equal a 

whole number (n) of half wavelengths (λ/2) long, 
accordingly equation L=n λ/2. On Figure 1 are shown 
microtubules and possible wavelength traveling on them for 
modes n=1, 2, 3, 4. (For n=1 the wavelength is λ=2L; for 
n=2 the wavelength is λ=L; for n=3 the wavelength is 
λ=2L/3; for n=4 the wavelength is λ=L/2).  

Giving in the mind that the length of strings is equal to 

(1-30) µm, for first mode n=1 the calculated wavelengths 
will be: 

λ=2L=(2.0-60)µm               (23) 

For n=1 the resonant frequencies f(n)  for strings and bar 
clamped at its center will be in the interval of: 

f(1)=v/2L=(2.828×102/λ-8.944×102/λ)m/s      (24) 

For λ = 2 µm the calculated frequencies fall in the interval 
of: 

f(1)=(1.414×108–4.472×108)Hz          (25) 

For λ = 60 µm the calculated frequencies fall in the 
interval of: 

f(1)=(4.71×106–1.49×107)Hz             (26) 

For bar clamped of a distanceL/4 from its end, the 
frequencies will be 2 fold higher i.e. 

f(1)=(2.828×108–8.994×108)Hz           (27) 

and 

f(1)=(9.42×108–2.98×107)Hz              (28) 

For modes of n= 2, 3, 4 the calculated frequencies f(2), f(3) 
and f(4) will be 2, 3 and 4 fold higher than basic frequency 
f(1). The calculated vibration modes and corresponding 
frequencies of longitudinal waves for first four modes are 
given on Table 2. 

The calculated on Table 1 interval of frequencies 
(4.71×106- 1.788×109) Hz overlaps with previously 
calculated from Pokorny et al.[3, 6, 17] proper-frequencies 
of microtubule vibrations f ~ 107 -1010 Hz. The calculated 
from us speed of waves and calculated from other authors 
speed [6, 16, 17]  lies in same diapason of 100-1000 m/s. 

Table 2. Calculation of vibration modes and proper- frequencies of 

standing longitudinal waves on microtubules-strings and bars 

Mode 

number 

n 

Young’s modulus 1×108 

N/m2 

(speed of waves 2.828×102 

m/s) 

Young’s modulus 1×109 N/m2 

(speed of waves 8.944×102 

m/s) 

For L=1µm For L=30µm For L=1µm For L=30µm 

(λ=2µm) (λ=60µm) (λ=2µm) (λ=60µm) 

1. 1.414×108 Hz 4.71×106 Hz 4.472×108 Hz 1.49×107 Hz 

2. 2.828×108 Hz 9.42×106 Hz 8.944×108 Hz 2.98×107 Hz 

3. 4.242×108 Hz 1.41×107 Hz 1.341×109 Hz 4.47×107 Hz 

4. 5.656×108 Hz 1.88×107 Hz 1.788×109 Hz 5.96×107 Hz 

For microtubules with length 30µm (and λ=60 µm) the 
calculated frequencies (4.71×106 – 5.96×107 Hz) overlaps 
with frequencies of electric signals (8-9 MHz) emitted from 
yeast cells [17, 49].  

The recent investigations show that the microtubules 
interact directly with numerous membrane proteins and form 
scaffolds. These include proteins as diverse as ion channels, 
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receptors, ion pumps and others [75]. However, the activity 
of ion pumps can be regulated by a subset of specifically 
modified tubulin, namely acetylated tubulin [76]. These 
show the presence of a possible functional relationship 
between microtubules and ion channels. The microtubules 
are associated with the membrane and vibrate with same 
frequencies with it and respectively, with ion channels in 
membrane. For example: ion channels allow the movement 
of ions at rates of the order about107-109 ions per second [77, 
78, 79]. The microtubules have the same frequency of 
vibration ~2×107-2×109 Hz. 

Coupling mechanism between rate of ion transfer trough 
membrane and frequency of longitudinal microtubule’s 
vibration could be transmembrane electric field with 
extremely high intensity ~106-107 V/m, which act 
simultaneously over microtubules and ion channels in 
membranes and synchronized their working frequencies. 

8. Discussion  

The interval of calculated on Table 1 and Table 2 
frequencies falls between 103–109 Hz. The frequencies of 
microtubule’s vibration higher than 109 Hz can be received 
for very short bars with length some tubulin-dimer 
molecules. For example, bar with length of single 
tubulin-dimer 8×10-9 m, Young modulus 108-109 N/m2 and 
speed of longitudinal waves on it  2.828×102 - 8.944×102 
m/s would have vibration frequencies of longitudinal waves 
in diapason of 1010-1011 Hz. In same diapason fall the 
Fröhlich frequencies [7, 8] and microwaves ~3×108 to 
3×1011 Hz [19, 20, 21]. The frequencies lower than 103 Hz 
can be received for very low elastic modulus, equal to values 
of rupture stress modulusр ~0.4-0.5 N/m2 and very long 
microtubules ~10-30 µm. For example, the speed of waves 
corresponding to rupture stress modulus 0.4-0.5 N/m2 and 
density of microtubules 1250 kg/m3 falls in the interval of 
1.78×10-2 -2.0×10-2 m/s. In this case, the interval of 
calculated frequencies is 600-2000 Hz and overlaps with 
observed from Pokorný et al. [3] mechanical vibrations 
(with 800 Hz) yeast membranes and electrical oscillations 
(with frequency 400-1600Hz) of membrane of synchronized 
and non-synchronized yeast cells. Thus, the calculated 
proper-frequencies of theoretical possible transverse waves 
fall in relatively low frequency diapason of 6×102-107 Hz 
and overlaps with experimentally registered frequencies 
(from 30Hz to 107 Hz) of mechanical and electromechanical 
vibrations in cells (see Fig. 2). The proper-frequencies of 
theoretical possible longitudinal waves fall in relatively high 
diapason of 106-1011 Hz and overlap with some 
experimentally measured and predicted electric vibrations in 
cells, as well as the frequency of the external electric and 
electromagnetic fields (105 to 3×1011 Hz) with non-thermal 
effects on cells (Figure 2). This interrelationship between 
elastic modulus, type of vibration and diapason of 
frequencies could be presented on Scheme 1, and can be 
explained by the molecular structure of microtubules [37, 
62]. The microtubules have an anisotropic structure, because 

of the longitudinal interactions between alpha and beta 
tubulin-subunits. In the propagation of transverse waves on 
microtubules, whole molecules of tubulin-subunits can be 
displaced from their equilibrium positions without changing 
their conformation. Their replacement however may be 
accompanied with a conformational transition of molecules 
from α to β state. When whole molecules are displaced 
without conformational transitions, transverse waves 
propagate as mechanical waves without the electrical 
component. If simultaneously with the transversely shift of 
the molecules of tubulin-subunits perform conformational 
transitions from α to β state, the transverse waves propagate 
as mixed type - electromechanical and electrical oscillations. 

Scheme 1. Connections between elastic modulus, type of waves and 
frequency diapason of vibrating microtubules. 

SHEAR MODULUS→ transverse vibrations→ mechanical 

and electric waves→ frequency diapason of 6×102 - 107 Hz. 

YOUNG MODULUS→longitudinal vibrations→ 

electromagnetic waves→ frequency diapason of 5×106 – 1011 

Hz. 

 
Figure 2. Scaling of calculated and experimentally registered frequencies 

of vibration in cells (bacteria, yeast, infuzorii and erythrocytes), and 

frequencies of external electric and electromagnetic fields with non-thermal 

effects on cells. 

Unlike the transverse waves, the longitudinal waves are 
obviously connected with conformational change of 
tubulin-heterodimer from α to β state and vibration of dipole 
moment of heterodimers. Because of the high dipole 
moment of tubulin molecules, it is possible during their 
vibration to generate at the same time electrical, 
electromechanical and electromagnetic oscillations in the 
space around them. 

9. Conclusion 

The study describes a physical model of vibrating 
microtubules in living cells, presented as strings and bars. 
The calculated modes of transverse and longitudinal waves 
on microtubules are based on experimentally measured 
mechanical characteristics of microtubules. The vibrating 
microtubules can have wide spectrum of physical effects on 
cellular processes (influence on architecture of the cells, 
transport of matter, energy and information in membrane 
and cytoplasm of the cells (and between cells), acceleration 
of diffusion, biochemical and metabolic processes and 
others).  
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The importance of the model due to the possibility to 
explain different cellular processes, using clear physical 
model and calculations based on the classical physics.  

The proposed model can be future developed, firstly, to 
develop the participation and effect of microtubules 
vibration on the mechanism of cell mitosis and dividing of 
cells by binary, accordingly the scheme given on Fig.1, A (a, 
b).  

Secondly, the proposed model can explain (by flow of 
energy between vibrating microtubules) the communication 
between the centrioles and nucleus, the centrioles and 
mitochondria and between others cellular structures with 
participation of microtubules and centrioles, accordingly 
model given on Fig.1 (B, a).   

By vibrating microtubules, it can explain (Fig.1, B, b) the 
communication mechanisms and flow of information 
between cellular sensor structures (for example, between 
sensor cilia and centrioles) in photoreceptors, 
mechanoreceptors and chemo-receptors. 

Because of the cellular, tissues and organ architecture 
depend on microtubules distribution and organization in 
cytoplasm of the cells, the model can be developed for 
cell-cell communications and particularly in the case of 
tumor processes in tissues and organs of the body (Fig.1, B, 
b).    
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