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ABSTRACT

In the present paper we address the problem of the energy downconversion of the light absorbed by a protein
into its internal vibrational modes. We consider the case in which the light receptors are fluorophores either
naturally co-expressed with the protein or artificially covalently bound to some of its amino acids. In a recent
work [Phys. Rev. X 8, 031061 (2018)], it has been experimentally found that by shining a laser light on the
fluorophores attached to a protein the energy fed to it can be channeled into the normal mode of lowest
frequency of vibration thus making the subunits of the protein coherently oscillate. Even if the phonon
condensation phenomenon has been theoretically explained, the first step - the energy transfer from electronic
excitation into phonon excitation - has been left open. The present work is aimed at filling this gap.

Introduction
The activation of out-of-equilibrium collective intramolecular vibrations of a model protein has
been recently reported in Ref.1. This phenomenon has been induced by light pumping, realised by
shining a laser light on an aqueous solution of BSA (Bovine Serum Albumin) protein molecules each
one carrying a few fluorophores covalently attached to their Lysine residues. The fluorophores were
excited with a blue light at 4880Å and then they re-emitted a broadband fluorescence radiation
peaked at 5190Å, thus the difference between the absorbed and re-emitted photon energies resulted
in a concentration of an average energy of 0.19 eV at the fluorophores sites which thus became "hot
points" on each protein. A continuous energy supply of this kind was experimentally found effective
to excite the vibrational modes of the proteins and, with an energy supply rate exceeding a suitable
threshold, this eventually led to a phonon condensation phenomenon into the lowest vibrational
frequency. The relevance of this out-of-equilibrium collective molecular vibrations consists in
the possibility of activating long-range electrodynamic interactions between bio-macromolecules2.
The reason is that, at thermal equilibrium, a macromolecule vibrates incoherently with a broad
spectrum of modes, whereas the action of an external source of energy promoting a phenomenon
of phonon condensation can induce the coherent motion of the molecular subunits, so that, the
resulting collective vibration can bring about a large oscillating dipole moment. Under this condition
long-range and resonant (thus selective) electrodynamic forces can be activated. In turn, these
electrodynamic forces could help explaining the astonishing efficiency of the impressively complex
biochemical machinery at work in living cells3, where the different actors (proteins, DNA and RNA)
find their cognate partners and targets in the right place, at the right time and in the right sequence
in an overcrowded environment (the cytosol). Electrodynamic resonant/selective forces are the
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only possible one to act at a long distance, all the others (chemical bonds, Van der Waals and
electrostatic forces) are in fact either intrinsically acting at very short distances, or are screened by
the freely moving small ions in the cytosol. Actually, this is a longstanding theoretical scenario4–6
which, for several reasons, has been discarded. However, the upgrade of Fröhlich’s theoretical
proposition in1,2 and the experimental outcomes reported in1, represent a first crucial leap forward
to ascertain whether the above mentioned hypotheses can be given experimental confirmation or
refutation that can be attempted with the nowadays available technology7,8.

The Wu-Austin Hamiltonian from which Fröhlich rate equations can be derived by resorting to
time dependent perturbation theory12 reads as

ĤTot =
∑
ωi

}ωi aωi âωi +
∑
Ωj

}Ωj bΩj
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+
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Ω′k

}Ω
′
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ĉΩ′k
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+
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χωiωjΩk
aωi âωjbΩk

+ h.c.

where aωi , âωi are the quantum creation/annihilation operators for the vibrational normal modes
of a biomolecule with frequency ωi. A thermal bath at temperature TB toward which the normal
modes of the biomolecule dissipate energy is represented by a collection of harmonic oscillators
with characteristic frequencies Ωj whose annihilation/creation operators are b̂Ωj

and bΩj
. In order

to put the biomolecule out of thermal equilibrium, the external energy pumping is modeled by
another thermal bath at a temperature TS� TB represented by a collection of harmonic oscillators
with frequencies Ω′k, the quantum annihilation/creation operators of which are ĉΩ′k and cΩ′k . Then,
besides linear interactions among the thermal baths modes and the biomolecule modes, mode-mode
interactions among the biomolecule normal modes are considered to be mediated by the modes of
the former thermal bath.

The aim of the present paper is to understand, qualitatively and quantitatively, how this
model can be improved to better represent the experimental conditions realised in Ref.1 for what
specifically concerns the high temperature heath bath (at TB). In other words, how can we better
describe the process of conversion of the photon energy received through electronic excitation of the
fluorophores attached to a biomolecule (protein) into vibrational energy of the chain of subunits
(amino acids) composing it. In what follows, we will tackle a simplified model with respect to that
described by Eq.(1) by focusing on the energy transfer process from the light excited electrons of
the fluorophores to the phonons of a chain of particles representing a chain of amino-acids, so this
is intended as a first step toward an upgrade of the model in Eq.(1).

As we shall see, it is found that only a fraction of the initially available electron energy is
released to the phonons of a biomolecule. Even an approximate estimate of this energy transfer
process is very important for a better assessment of the physical conditions which are necessary to
activate the intramolecular collective vibrations.

Definition of the model
In Ref.1 the external source of energy driving the phonon condensation was modeled (by one of
us among the others) as high temperature heat bath. This was done to reformulate in a classical
framework the Wu-Austin12 quantum model leading to the original Fröhlich rate equations of Ref.4.

We now aim at refining this part of the model in view of a better understanding of the basic
excitation mechanism that can bring a macromolecule out of thermal equilibrium.
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In both cases of photo-excitation and, presumably, of ionic collisions, the excitation mechanism
is supposed to be mediated by the molecular electron cloud. Therefore, the model describing the
phenomenon that we want to investigate is borrowed from the standard Davydov and Holstein-
Fröhlich models14–16 to account for electron-phonon interaction. Hence, the following energy
operator is assumed

Ĥ = Ĥel+ Ĥph+ Ĥint, (2)

where the first term Ĥel is the electron energy operator

Ĥel =
N∑
n=1

[
E0B̂

†
nB̂n+ ε〈B̂†nB̂n〉B̂†nB̂n+J(B̂†nB̂n+1 + B̂†nB̂n−1)

]
, (3)

with B̂n and B̂†n the annihilation and creation operators for the electron at any site n (n= 1,2, , ...,N)
which labels the amino acid along the protein. The term E0B̂†nB̂n accounts for the initial "bare"
electron energy distributed on several lattice sites according to initial shape of the electron
wavefunction. The constant J is the nearest neighbour coupling energy of the electron tunnelling
across two neighbouring amino acids, and ε is the energy scale of the nonlinear electron-electron
coupling. In this model we have considered only a longitudinal chain of amino acids. The moving
electron - yielded by the excited fluorophore - interacts on its way with almost free electrons in each
amino acid, and it may just propagate along the chain of amino-acids or make a disturbance which
will allow a next electron to continue on the trip. Anyway, due to electron indistinguishability, the
net effect is a traveling electron along the chain of amino-acids rather than an excitonic transfer
because in this latter case there is no moving mass along the chain. Then the term ε〈B̂†nB̂n〉B̂†nB̂n
has been introduced to take into account non-linear effects due to the interaction between the
electron in motion along the chain and the electrons of the substrate of amino acids. In particular,
the term takes into account effects related to the Coulombic repulsion between the traveling electron
and the charges localized on the amino acids. The averaging is intended as the expectation value of
B̂†nB̂n on the dynamically evolving state of the system.

The second term Ĥph in (2) is the phonon energy operator

Ĥph = 1
2
∑
n

[
p̂2
n

M
+ Ω(ûn+1− ûn)2 + 1

2µ(ûn+1− ûn)4
]
, (4)

where p̂n and ûn are momentum and position operators for longitudinal displacements of amino
acids at site n, respectively. Furthermore, M and Ω are average values of the mass of the amino
acids of a protein and of the spring constants of two neighbouring amino acids, respectively. The
quartic term is a correction stemming from the power series which gives the harmonic term at
the lowest order expansion around the minimum of interparticle interaction potential (typically
nonlinear, as is the case, for example, of the Van der Waals potential). This term is responsible
for phonon-phonon interaction, absent in the harmonic approximation; the parameter µ sets the
strength of the phonon-phonon coupling.

Finally, the third term Ĥint in (2) is the electron-phonon interaction operator

Ĥint =
∑
n
χ(ûn+1− ûn)B̂†nB̂n, (5)

where χ is the energy coupling parameter.
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Derivation of the dynamical equations with TDVP
In order to derive from the model Hamiltonian (2) the corresponding dynamical equations, we
make a simplifying ansatz about the state vectors by assuming the following factorization

|ψ〉= |Ψ〉|Φ〉 (6)

in which |Ψ〉 describes an electron given a single quantum excitation and supposed to be free to
propagate along the chain of N amino acids composing a protein

|Ψ(t)〉=
∑
n
Cn(t)B̂†n|0〉el, (7)

where |0〉el is the vacuum state of the Amide-I oscillators, and

|Φ(t)〉= e−
i
h̄

∑
[βn(t)p̂n−πn(t)ûn]|0〉ph. (8)

We then set

〈Φ|ûn|Φ〉 = βn(t),
〈Φ|p̂n|Φ〉 = πn(t), (9)

where βn(t) and πn(t) are the average values of the longitudinal displacement and momentum of
an amino acid, respectively.

To derive dynamical equation we now resort to the time-dependent variational principle (TDVP)
in quantum mechanics. TDVP is a formulation of the time-dependent Schrödinger equation through
variation of an action functional. The Schrödinger equation is obtained by requiring that the
action functional be stationary under free variation of the time-dependent state. According to this
principle, we define a new wave function |φ〉 in terms of |ψ〉 in Eq. (6) as

|φ(t)〉= eiS(t)/h̄|ψ(t)〉, (10)

where S(t) is a time-dependent phase factor (S(t)∈R), which will be determined in a self-consistent
manner and the normalization condition is 〈φ|φ〉= 1. The wave function |φ〉 satisfies the Schrödinger
equation

ih̄〈φ(t)|∂t|φ(t)〉= 〈φ(t)|Ĥ|φ(t)〉, (11)

which according to Eq. (10) becomes

−Ṡ(t) + ih̄〈ψ(t)|∂t|ψ(t)〉= 〈ψ(t)|Ĥ|ψ(t)〉. (12)

Integrating, we obtain

S(t) =
∫ t

0

[
ih̄〈ψ(t)|∂t|ψ(t)〉−〈ψ(t)|Ĥ|ψ(t)〉

]
dt. (13)

We can now derive the equations of motion by requiring that the action with the Lagrangian

L= ih̄〈ψ(t)|∂t|ψ(t)〉−〈ψ(t)|Ĥ|ψ(t)〉 , (14)

to be stationary

δS(t) = δ
∫
Ldt= 0. (15)
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From Eqs. (6), (7), and (8) we write

∂t|ψ〉= (∂t|Ψ〉) |Φ〉+ |Ψ〉(∂t|Φ〉) , (16)

and then arrive at

〈ψ|∂t|ψ〉=
∑
n

[
Ċn(t)C∗n(t) + i

2h̄

(
π̇n(t)βn(t)−πn(t)β̇n(t)

)]
. (17)

Thus the Lagrangian (14) becomes

L=
∑
n

{
ih̄Ċn(t)C∗n(t) + 1

2

(
πn(t)β̇n(t)− π̇n(t)βn(t)

)
−H(Cn,C∗n,βn,πn)

}
, (18)

where

H(Cn,C∗n,βn,πn) = 〈ψ(t)|Ĥ|ψ(t)〉. (19)

Imposing the condition (15), we get

δS(t) =∑
n

{
ih̄
(
− Ċ∗n(t)δCn(t) + Ċn(t)δC∗n(t)

)
+ β̇n(t)δπn(t)− π̇n(t)δβn(t)

−(∂CnH)δCn− (∂C∗nH)δC∗n− (∂βnH)δβn− (∂πnH)δπn
}

= 0, (20)

from which it results

ih̄Ċn = ∂C∗nH

β̇n = ∂πnH

π̇n = −∂βnH . (21)

The expectation value of the Hamiltonian is

〈ψ|Ĥ|ψ〉 =∑
n

[
E0|Cn|2 + ε|Cn|4 +J(C∗nCn+1 +C∗n+1Cn)

+1
2

(
1
M π2

n+ Ω(βn+1−βn)2 + 1
2µ(βn+1−βn)4

)
+χ(βn+1−βn)|Cn|2

]
. (22)

So, from Eq. (22) we have

ih̄Ċn =
(
E0 + 2ε|Cn|2 +χ(βn+1−βn)

)
Cn+J(Cn+1 +Cn−1),

Mβ̈n = Ω(βn+1−2βn+βn−1) +χ
(
|Cn|2−|Cn−1|2

)
+ µ

(
(βn+1−βn)3− (βn−βn−1)3

)
. (23)
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Definition of the physical parameters for numerical simulations
Let us see how to make a physically reasonable choice of the coupling parameters entering the
Hamiltonian. We borrow from Ref.17,18 the estimates of the interaction energy between an electron
and each of all the 20 amino acids (reported in Table 1). The average value of these interaction
energies is 〈∆E〉= 0.74 eV with a dispersion σE = 0.47 eV. As a first rough picture of an electron
tunnelling across the sequence of amino acids constituting a protein we can consider the electron of
energy E0 moving in a periodic sequence of square potential barriers of height V0 = 0.74 eV and
of width a= 4.5Å, the average distance between two nearest neighboring amino acids14. We can
then weigh the electron displacement operators between neighbouring sites with the probability
P (n→ n± 1) of tunnelling from one potential well to the nearest ones. This is achieved by
computing the transmission coefficient

T =
[
1 + V 2

0 sinh2βa

4E0(V0−E0)

]−1

(24)

where β = [2me(V0−E0)/h̄2]1/2. Moreover, the coefficient of the electron displacement term in the
Hamiltonian has to be a characteristic energy scale of the process, thus a natural choice is to set
J ∝ 〈∆E〉T , then, assuming that an electron is initially excited at any given point of the chain of
amino acids and that it has the same probability of moving to the left or to the right, we add a
factor 1/2 so that finally we have J = 1

2〈∆E〉T . Now, assuming E0 = 0.19 eV as initial value of
the electron energy, we find J = 0.0585 eV, whereas assuming that only a fraction δ ∈ [0,1] of the
maximum available energy is kept by the electron, for example for δ = 0.5, we find J = 0.031 eV.
For what concerns the electron-phonon coupling constant χ, we make a rough estimate of its value
as χ= ∆E/∆x= σE/∆x= σE/a= 0.47eV/4.5Å' 100 pN.

Amino acid EIIP Ry EIIP eV Amino acid EIIP Ry EIIP eV
Leu 0.0000 0.0000 Tyr 0.0516 0.7017
Ile 0.0000 0.0000 Trp 0.0548 0.7452
Asn 0.0036 0.0489 Gln 0.0761 1.0349
Gly 0.0050 0.0680 Met 0.0823 1.1192
Val 0.0057 0.0775 Ser 0.0829 1.1274
Glu 0.0058 0.0788 Cys 0.0829 1.1274
Pro 0.0198 0.2692 Thr 0.0941 1.2797
His 0.0242 0.3291 Phe 0.0946 1.2865
Lys 0.0371 0.5045 Arg 0.0959 1.3042
Ala 0.0373 0.5072 Asp 0.1263 1.7176

Table 1. Electron-Ion interaction potential (EIIP) value for amino acids. From Ref.17.

In what follows, in dimensionless units, we have χ′ = 0.81, and J ′ = 5 with δ = 0.5, while J ′ = 9
with δ = 1.

By rescaling time and lengths as t= ω−1τ and βn = Lbn, respectively, where L=
√
h̄ω−1M−1,
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the following dimensionless dynamical equations are obtained

i
dCn
dτ

=
[(
E′+ 2ε′|Cn|2 +χ′(bn+1− bn)

)
Cn+J ′(Cn+1 +Cn−1)

]
,

d2bn
dτ2 = Ω′(bn+1−2bn+ bn−1) +χ′

(
|Cn|2−|Cn−1|2

)
+ µ′

[
(bn+1− bn)3− (bn− bn−1)3

]
, (25)

and the dimensionless expression of the Hamiltonian is

〈ψ|Ĥ|ψ〉=
∑
n

[
E′|Cn|2 + ε′|Cn|4 +J ′(C∗nCn+1 +C∗n+1Cn)

+ 1
2

(
ḃ2n+ Ω′(bn+1− bn)2 + 1

2µ
′(bn+1− bn)4

)
+χ′(bn+1− bn)|Cn|2

]
, (26)

where

E′ = E0
h̄ω

; ε′ = ε

h̄ω
; J ′ = J

h̄ω
;

χ′ = χ√
h̄Mω3

; Ω′ = Ω
Mω2 ; µ′ = µh̄

M2ω3 . (27)

In order to perform numerical integration of the dynamical equations it is useful to introduce
the variables

qn = Cn+C∗n√
2

, pn = Cn−C∗n
i
√

2
, (28)

so that Eqs.(25) become

q̇n =
[
E′+ ε′

2 (q2
n+p2

n) +χ′(bn+1− bn)
]
pn+J ′(pn+1 +pn−1), (29)

ṗn =−
[
E′+ ε′

2 (q2
n+p2

n) +χ′(bn+1− bn)
]
qn+J ′(qn+1 + qn−1)

]
, (30)

b̈n = Ω′(bn+1−2bn+ bn−1) + χ′

2

(
(q2
n+p2

n)− (q2
n−1 +p2

n−1)
)

+µ′
[
(bn+1− bn)3− (bn− bn−1)3

]
. (31)

By denoting with Bn[b(t),q(t),p(t)] the r.h.s. of Eq. (31) we have

bn(t+ ∆t) = 2bn(t)− bn(t−∆t) + (∆t)2Bn[b(t),q(t),p(t)] (32)

which can be rewritten in the form

ḃn = πn

π̇n = Bn[b(t),q(t),p(t)] . (33)
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Equations (29) and (30) and the above system have been numerically integrated by combining a
finite differences scheme and a leap-frog scheme as follows

qn(t+ ∆t) = qn(t) + ∆t Qn[b(t),q(t),p(t)],
pn(t+ ∆t) = pn(t) + ∆t Pn[b(t),q(t),p(t),
bn(t+ ∆t) = bn(t) + ∆t πn(t),
πn(t+ ∆t) = πn(t) + ∆t Bn[b(t+ ∆t),q(t+ ∆t),p(t+ ∆t)]. (34)

whereQn[b(t),q(t),p(t)] and Pn[b(t),q(t),p(t) are the r.h.s. of Eqs.(29) and (30), respectively. This
integration scheme is a symplectic one, meaning that all the Poincaré invariants of a Hamiltonian
flow - like the one described by Eqs.(34) - are conserved, among these invariants there is energy. The
generating function of the canonical transformation of variables {qn(t),pn(t)}→ {qn(t+∆t)),pn(t+
∆t))} performed by the leap-frog algorithm is explicitly given (thus proving the symplectic character
of this algorithm) in Ref.13. Therefore energy is well conserved without any drift, just zero-mean
fluctuations around a given energy value fixed by the initial conditions. By using sufficiently small
time steps ∆t any desired precision of energy conservation can be attained.

About the initial conditions, we aim at simulating a physical situation where each photon
absorbed by a fluorophore attached to a protein releases - in the average - 0.19 eV of energy to
the surrounding electron cloud. This energy is the difference between the energies of the absorbed
photon of 4880Å and that of the re-emitted one as fluorescent radiation of 5150Å. We assume, as
already stated above, that the effect of a single photon excitation is to make one electron move
across the protein by tunnelling through a sequence of potential barriers. In the experiments
to which we are referring1 each protein is labelled with 5-6 fluorochromes, and a laser light is
continuously shined on the labelled proteins, therefore what we are after is modelling an elementary
process and assuming, in a first approximation, a property of additivity of the same elementary
process. In other words, if more than one electron is activated we assume that the resulting physical
effect is the sum of a single electron effect. As a consequence, the electron initial condition is
assumed to be described by a wavefunction Cn(t= 0) centered at the site n= n0 at time t= 014:

Cn(t= 0) = 1√
8σ0

sech
(
n−n0

4σ0

)
. (35)

where σ0 = 3ΩJ/χ2.
Then, coming to the initial conditions of the phonon component of the system, we assume a
thermalized macromolecule at room temperature, that is at T = 310K. At equilibrium, the energy
equipartition theorem for the Hamiltonian (4) reads〈

pn
∂Hph

∂pn

〉
=
〈
un
∂Hph

∂un

〉
= kBT (36)

where kB is the Boltzmann constant. At thermal equilibrium, energy is equally shared among all
the degrees of freedom and, in particular, between kinetic and potential energies, therefore at t= 0
the velocities and the displacements have been initialized with random values of zero mean and
fulfilling the conditions

〈|bn(0)|〉n =
√
kBT

h̄ωΩ′ ; 〈|ḃn(0)|〉n =
√
kBT

h̄ω
. (37)
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Name Symbol Value Symbol Dimensionless value
Hot-point energy E0 0.2 eV E′ 30

Average mass of amino acids M 1.5 ×10−25 kg - -
Spring constant Ω 18.3 N/m Ω′ 1.2

Electron displacement parameter J 0.0658 eV J ′ 10
Electron-phonon coupling χ 61-610 pN χ′ 0.5-5
Anharmonic parameter µ Arbitrary µ′ 0-0.5
Nonlinear parameter ε 0.00658-0.0658 eV ε′ 1-10

Table 2. Values of the parameters used in the numerical simulations. Physical versus
dimensionless values are reported.

expressed in dimensionless form. Let us remark that the physical state so modelled consists of a
large molecule which is initially at thermal equilibrium, thus the amino-acids constituting the large
molecule have random configurations and movements, and then, at some initial time, "hot points"
are created on the molecule, bringing it (transiently) out of equilibrium.

In Table 2 the values chosen for the physical parameters are reported. These are: the initial
excitation energy E0, an average value of the mass M of the amino acids, the electron displacement
parameter J , the elasticity constant Ω used in the numerical studies of Ref.14, and the electron-
phonon coupling χ. In Table 2 also the corresponding dimensionless values of the same physical
quantities are reported, these are obtained by using (27) and the frequency ω = 1013s−1.

Results
All the numerical computations have been performed using an integration time step ∆t= 5×10−5

entailing a very good energy conservation, with typical relative error ∆E/E ' 10−5. The length of
the chain is N = 500 rounding the number of amino acids of the protein in1. Figures (1) and (2)
show the spatial distribution of the probability |ψ(n,t)|2 of finding the moving electron at any site n
versus time for the electron-phonon coupling χ= 100 pN and χ= 366 pN, respectively. The electron
is initially centered around the site n= 250. Figure (1) shows that the electron wavefunction quickly
spreads over the whole substate of amino acids, a phenomenon somewhat less pronounced in Figure
(2) and to some extent counterintuitive since the latter corresponds to a stronger electron-phonon
coupling.
Figure (3) shows the time evolution of random initial conditions for the displacements of the
underlying chain of masses modelling the chain of amino acids of a protein. The random initial
displacements and velocities are generated at thermal equilibrium at 310 K, according to the
prescriptions of Eq.(37).
Figure (4) synoptically displays the energy transfer from the electron to the phonon subsystem.
The same figure also shows that the larger χ the faster this energy transfer, what is physically
sound and not necessarily at odds with what reported in Figures (1) and (2) about the electron
wavefunction spreading.

As is seen from the plots in Figures (5), the value of the phonon-phonon coupling parameter
µ′ does not seem crucial to control the release of the electron energy to the phonons, the process
appears to be mainly driven by the electron-phonon coupling constant. In fact, for χ= 488 pN the
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relaxation to the oscillatory state is quick and practically independent of the value of µ′. At the
lower value χ= 61 pN some differences in the relaxation rate are observed by varying µ′, but even
for µ′ = 0 the energy transfer takes place in both cases of χ= 61 pN and χ= 488 pN.

Then we have checked how the phenomenology changes as a consequence of the introduction of
the nonlinear coupling in the electron Hamiltonian. In Figures (6) and (7) the effects of different
values of the parameter ε are reported, again for χ= 61 pN and χ= 488 pN respectively. Again for
χ= 488 pN the electron energy fastly decrease in time, apart from the case of ε= 6.58 meV where
it displays wide oscillations. At χ= 61 pN the electron energy relaxation is slower and for ε= 6.58
meV it appears to be very slow.
Let us remark that a non-vanishing value of ε, that is, the presence of the nonlinear coupling term
in the electron Hamiltonian, plays a relevant role to ensure a more efficient transfer of part of the
electron energy to the phonons of the chain of amino acids.

For any chosen set of physical parameters, except possibly for ε= 0, the electron always transfers
part of its energy to the phonons, and eventually this energy is equally shared among the phonons.
In order to work out the typical time scales of this process we have computed the spectral entropy
of the normal modes of the chain of amino acids, that is, of the phonons. For the harmonic term
Hh of the dimensionless Hamiltonian (26) we have

〈ψ|Ĥh|ψ〉= 1
2

N∑
n=1

[
ḃ2n+ Ω′(bn+1− bn)2

]
, (38)

and then, by following Ref.13, the coordinate transformations Qm = Smnbn and Pm = Smnḃn, with

Smn = 1√
N

[
cos(2π

N
mn) + sin(2π

N
mn)

]
m,n= 1,2, ..,N , (39)

transform the Hamiltonian (38) into

H̃h = 1
2

N∑
m=1

(P 2
m+ Ω

′
ω2
mQ

2
m), (40)

where

ω2
m = 4sin2(πm

N
). (41)

Of course, these oscillators are the normal modes (phonons) of the system. Then a spectral entropy
S(t) is defined as

S(t) =−
N∑
m=1

pm(t) lnpm(t); pm(t) = Em(t)
ET (t) (42)

where ET (t) = ∑N
m=1Em(t) and Em(t) = (P 2

m + Ω′ω2
mQ

2
m)/2, so that the weights pm(t) are nor-

malized. The maximum value of S(t) is attained when all the pm(t) are equal to 1/N . Thus,
at equipartition, when the energy content of each normal mode is the same, entropy attains its
maximum, this allows to define a normalized entropy as

η(t) = Smax(t)−S(t)
Smax(t)−S(0) , (43)
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so that when the phonon oscillators are "frozen" it is S(t) = S(0) and consequently η = 1; but
at equipartition, when S(t) = Smax(t), it is η = 0. By following the time decay of η, it is thus
possible to find out if and on which time scale the energy released by the electron is definitely
transferred to the phonons. In Figure (8) η(t) is plotted as a function of time for various values of
the coupling constant χ and keeping fixed the other parameters as in the case reported in Figure
(1). It is evident that equipartition of energy is always attained, and the time needed for this to
happen is rather weakly dependent on the electron-phonon coupling constant. In fact, the decay
time is approximately varying between 0.5 ns and 1 ns (the unit time scale being 10−13 seconds).
Let us remark that the two time scales of the electron energy release to the amino acids and of
equipartition of this energy among all the normal modes of the lattice are not equal, and need not
to be equal.

Figure 1. (Color online) Evolution of the probability amplitude of an electron |ψ(t)|2 along the
chain of N = 500 amino acids. Initial conditions: T = 310◦K, E′ = 30, J ′ = 10, ε′ = 5, χ′ = 0.8,
Ω′ = 1.2, µ′ = 0.1, corresponding to E0 = 0.2 eV, J = 0.0658 eV, ε= 0.0329 eV, χ= 100 pN, Ω = 18.3
N/m, respectively. The right figure is the above view of the left one. Time t is measured in 10−13s.
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Figure 2. (Color online) Evolution of the probability amplitude of an electron |ψ(t)|2 with
N = 500 and χ′ = 3 (χ= 366 pN); the other parameters are the same of Fig. 1. Time t is measured
in 10−13s.

Figure 3. (Color online) Time evolution of the average displacements along the chain of N = 500
amino acids. The parameter values are the same of Fig. 1. Time t is measured in 10−13s.
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Figure 4. (Color online) Energy transfer from the electron to the phonons for χ′ = 0.6 (χ= 73.2
pN) (green solid line), χ′ = 0.8 (χ= 100 pN) (blue dotted line), χ′ = 1 (χ= 122 pN) (red
dot-dashed line), and χ′ = 1.5 (χ= 183 pN) (black dashed line); the other parameters are the same
of Fig. 1. Time t is measured in 10−13s; electron energy and total phonon energy are given in eV.

Figure 5. (Color online) Decay of the electron energy for µ′ = 0 (green solid line), µ′ = 0.1 (blue
dotted line), µ′ = 0.3 (red dot-dashed line), and µ′ = 0.5 (black dashed line); the other parameters
are the same of Fig. 1, except for χ′ = 0.5 (χ= 61 pN) (left panel) and χ′ = 4 (χ= 488 pN) (right
panel). Time t is measured in 10−13s; electron energy is given in eV.
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Figure 6. (Color online) Decay of the electron energy for a) ε= 0, b) ε′ = 1 (ε= 6.58 meV), c)
ε′ = 5 (ε= 32.9 meV), and d) ε′ = 10 (ε= 65.8 meV); the other parameters are the same of Fig. 1,
but χ′ = 0.5 (χ= 61 pN). Time t is measured in 10−13s; electron energy is given in eV.

14/19



Figure 7. (Color online) Decay of the electron energy for a) ε= 0, b) ε′ = 1 (ε= 6.58 meV), c)
ε′ = 5 (ε= 32.9 meV), and d) ε′ = 10 (ε= 65.8 meV); the other parameters are the same of Fig. 1,
but χ′ = 4 (χ= 488 pN). Time t is measured in 10−13s; electron energy is given in eV.
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Figure 8. (Color online) The spectral entropy η is plotted vs time for χ′ = 0.1 (χ= 12.2 pN) (dark
green), χ′ = 0.5 (χ= 61 pN) (dark blue), χ′ = 1 (χ= 122 pN) (red), χ′ = 2 (χ= 244 pN )( light
green), χ′ = 3 (χ= 366 pN) (light blue), χ′ = 4 (χ= 488 pN) (black), and χ′ = 5 (χ= 610 pN)
(purple); the other parameters are the same of Fig. 1. Time t is measured in 10−13s.

Discussion
Of course we are faced with the problem of understanding what might replace the laser action in
living cells. There are several possible candidates to play the role of external energy suppliers, for
instance, the hydrolysis of Adenosine Triphosphate (ATP) releases a highly energetic phosphate
group, redox reactions and mitochondria produce weak UV photons that might excite Tryptophan
and Tyrosine amino acids9,10 in proteins, as well nucleotides of DNA and RNA. Also an anisotropic
momentum transfer operated by water molecules or ions could make the job11. In either cases of
metabolically generated photons or of ion collisions (phosphate stemming from ATP hydrolysis
or other) we can assume that the external energy input for a biomolecule occurs through the
generation of "hot points", as in the case of light activated fluorophores, and mediated by either
radiative or collisional electronic excitation.

The parameter space of the system investigated here is of course very large, thus we have
limited our investigation to a basic choice of physically meaningful parameters with respect to
the topic that we aimed at better understanding. Then we have checked the robustness of the
phenomenology so observed by changing some parameters, as is the case of the nonlinear coupling
constants ε and µ, or the electron-phonon coupling constant χ. The results actually show that
after having given 0.19eV of initial excitation energy to an electron, the electron wavefunction
spreads through the chain by releasing to the phonons only a small fraction of the electron energy,
approximately 0.02eV. This is a somewhat unexpected result but interesting because it helps in
understanding why exciting a collective intramolecular oscillation of the BSA protein required a
very long time. Of course, the contributions of several fluorophores add up, and the continuous
illumination of the labelled proteins with an intense laser light allows to accumulate energy in the
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protein until the activation threshold of the coherent oscillation of all its atoms is reached and
passed over. This implicit assumption of the cumulative character of the fluorophore-contributions
comes from the experimental facts observed while working out the results reported in Ref.1. We
observed that trying to excite the collective vibrations of BSA molecules with different numbers of
attached fluorophores, only with at least five attached fluorophores - in the average - the collective
vibrations of the BSA molecules were activated. The phonon part has been simplified with respect
to the model derived by the de-quantisation of the original Fröhlich’s model4 because the model
investigated here has focussed only on the mechanism of down-conversion of the energy of the
photons, harvested by the protein through its fluorophores receptors, to the internal vibrations
of the chain of amino acids. Although no more than 10% of energy is dissipated by electron to
phonons, it seems that in the studied regime no coherent transport of information can occur on
the amino acids (as sometimes one could expect in a spin chain model19 ) due to the fact that the
electron wave function spreads over all sites. The model studied here can be easily adapted to
estimate the efficiency of other excitation mechanisms of biomolecular collective oscillations, like,
possibly, the Coulomb collisions of the phosphate anion produced by the hydrolysis of ATP yielding
a momentum transfer on some target electron. Or, as already mentioned in the Introduction, by
anisotropic momentum transfer operated by water molecules or small ions resulting in collisional
excitation of electrons. Let us conclude by mentioning that, for a broad class of Hamiltonian
systems, long-living Quasi Stationary States (QSS) can be dynamically generated which keep a
system out of thermodynamic equilibrium. Among many other systems where QSS are produced20,
let us mention a beam of fast particles interacting with the set of waves describing a physical
system21,22, a situation which is reminiscent, for example, of the above mentioned fast phosphate
groups - produced by ATP hydrolysis.
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