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Collective behavior of oscillating 
electric dipoles
Simona Olmi1,2,3, Matteo Gori4,5, Irene Donato5 & Marco Pettini4,5

We investigate the dynamics of a population of identical biomolecules mimicked as electric dipoles 
with random orientations and positions in space and oscillating with their intrinsic frequencies. The 
biomolecules, beyond being coupled among themselves via the dipolar interaction, are also driven 
by a common external energy supply. A collective mode emerges by decreasing the average distance 
among the molecules as testified by the emergence of a clear peak in the power spectrum of the total 
dipole moment. This is due to a coherent vibration of the most part of the molecules at a frequency 
definitely larger than their own frequencies corresponding to a partial cluster synchronization of 
the biomolecules. These results can be verified experimentally via spectroscopic investigations of 
the strength of the intermolecular electrodynamic interactions, thus being able to test the possible 
biological relevance of the observed macroscopic mode.

The present work is motivated by a (practical) problem of (potentially) relevant impact: the experimental confir-
mation or refutation of the possibility of detecting long-range electrodynamic attractive forces among biomole-
cules, if any. The ultimate reason for searching these electrodynamic interactions stems from the observation of 
the high efficiency displayed by biomolecules when moving toward their specific targets and sites of action in liv-
ing cells. Biochemical players “need to know” where to go and when, and are capable to reach their cognate part-
ners so quickly that it hardly seems to be the result of a random search driven by thermal fluctuations (Brownian 
motion) alone. A longstanding hypothesis surmises that in order to accelerate these encounters, selective forces 
acting at a long distance are needed besides standard short-range ones (like covalent bonds, van der Waals forces 
etc.). This mechanism of molecular recruitment at a distance could be of high relevance to biology. Unfortunately, 
because of technological limitations, an experimental proof or refutation of this possibility has been for a long 
time and is still sorely lacking. The present day technological advances allow to cope with experimental chal-
lenges that were very hard to tackle in the past. This is the case of modern methods in Fluorescence Fluctuation 
Spectroscopy1,2 that we invoked in our previous studies3–5, and of Terahertz spectroscopy6 that we suggest for the 
present study as a reliable experimental setup to detect collective vibrating modes emerging in identical molecules 
ensembles.

In particular, in order to clarify the possible activation of electrodynamic interactions, it has been previously 
studied how the diffusion behavior of biomolecules in solution changes depending on their concentration, via 
the employment of Fluorescence Fluctuation Spectroscopy3–5. Varying the concentration corresponds to varying 
the average intermolecular distance as a consequence of the action of surmised electrodynamic intermolecular 
interactions. Moreover, is it shown in7 that, by shining a laser light on an aqueous solution of proteins a strong 
mesoscopic dipolar vibration for each molecule can be excited and detected in a sub-Terahertz frequency range. 
The detection in this case is possible thanks to dye molecules attached to each protein that harvest the incoming 
laser light. In particular these strong dipolar oscillations can switch-on intermolecular electrodynamic interac-
tions possibly acting at a large distance (even up to some thousands of Angstroms).

In the following we put forward an alternative/complementary experimental strategy. To this aim, we study 
the dynamical behaviour emerging in an ensemble of identical molecules, each one vibrating with a low fre-
quency mode, kept active by an external energy supply. A (mesoscopic) vibrational mode of a single molecule 
is the coherent vibration at the same frequency of a relevant fraction (or even of all) of its atoms, which brings 
about an oscillating electric dipole moment at the same frequency. The latter, in turn, activates an electrodynamic 
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intermolecular force whose potential decays as −1/r3, where r is the intermolecular distance. Then, by changing 
the average distance among the molecules (as a control parameter), we have observed the emergence of a collec-
tive behaviour, this time involving the whole ensemble of molecules, which is detected through neat and substan-
tial changes of a collective observable. This observable is a collective (macroscopic) one since it depends on the 
dynamical behaviour of all the molecules in the ensemble, and, more precisely, it consists in the power spectrum 
of the time variation of a quantity proportional to the total electric dipole moment of the system. In practice, this 
suggests a new experimental strategy to ascertain whether electrodynamic interactions among biomolecules can 
be activated: if we consider aqueous solutions of biomolecules, prepared with a salted solution sufficient to shield 
electrostatic interactions down to a few Angstroms, then we can excite these biomolecules with a suitable exter-
nal forcing (like the laser light) in order to induce a mesoscopic vibration in the system at the level of the single 
molecule. Then, by changing the concentration of these solutions, that is by changing the intermolecular interac-
tion strength which is a function of the distance between the molecules, and by switching on and off a laser light 
shining on the solution, some significative variation could be looked for by means of spectroscopic techniques to 
reveal whether or not the mentioned electrodynamic interactions are present.

The paper is organized as follows: in Section II the model is defined and discussed, while in Sec. III we report 
the outcomes of the Molecular Dynamics simulations of the model and we comment on the observed phenomenol-
ogy. Section IV is devoted to some concluding remarks about the results presented throughout the present paper.

The Model
Model for the biomolecule. As already stated in the Introduction, the present work aims at understanding 
whether through spectroscopic experiments, presumably in the Terahertz frequency domain, an experimental con-
firmation or refutation can be obtained of the theoretical prediction firstly stated in7: whether or not it is possible to 
activate electrodynamic forces between biomolecules, vibrating out-of-thermal equilibrium, in aqueous solution. 
In what follows, we consider a simple model for an ensemble of biomolecules randomly oriented and randomly 
distributed in 3D space, coupled through an interaction potential decreasing as −1/r3 as a function of the interpar-
ticle distance r. Each biomolecule is modeled as an oscillating electric dipole composed of two material points, each 
of them with a mass m and the same absolute value Ze of the electric charge but with opposite sign. The positions of 
the positive and negative charged particles of the i-th biomolecule are respectively r+,i and r−,i. The position of the 
center of mass of the i-th biomolecule is indicated by Ri while the direction of each dipole is
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Both have been considered to be fixed, so that the charged particle of each biomolecule are constrained to 
oscillate along their joining line, i.e. dRi/dt = 0 and =ˆ dtrd / 0i . These assumptions may seem to be quite strong 
with respect to a real biological molecular system where particles both diffuse and rotate due to the collisions with 
the surrounding water molecules. Indeed these assumptions are justified by the fact that the characteristic time 
scales of the inner oscillation of biomolecules are much shorter compared with those associated with the diffusion 
of the biomolecules centers of mass at their rotational diffusion (See Supplementary Information, Sec. I, for a 
more detailed discussion). It follows that the only dynamical variables are the mutual distances 

= − ⋅+ − ˆr r r r( )i i i i, ,  between the two centers of charge of each biomolecule. The electric dipole moment is given 
by = ˆt Zer tp r( ) ( )i i i.

Despite its simplicity, this model is suited to explore the presence of collective effects on the dynamics of coupled 
oscillating dipoles with fixed distance and orientations representing a system of oscillating biomolecules in mutual 
interaction through long-range quasi-static electrodynamic field generated by their oscillatory electric dipole.

Mechanical properties of a biomolecule. The mechanical properties of each biomolecule are described by an 
effective potential = −+ −V r V r r( ) ( )i eff i i, ,  that is supposed to exist between material charged points. A mini-
mum of the effective potential is assumed to be attained for ri = ri0, i.e. dV/dri(ri0) = 0 and <V rd /dr ( ) 0i i
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where the parameter Λ is the characteristic length of the oscillation amplitude for the emergence of non-harmonic 
contributions. The non-harmonic contribution has been included for two main reasons: firstly, it accounts for the 
exchange of energy of the main collective mode with other vibrational normal modes of the biomolecule; sec-
ondly, it prevents instability of the oscillations when the electric dipoles are strongly coupled among them.

Mutual quasi-electrostatic interactions among biomolecules. The physical system that we are mod-
eling is an ensemble of oscillating biomolecules in aqueous solutions in presence of freely moving ions. Since this 
work aims at studying collective phenomena originated by long-range electrodynamic interactions among bio-
molecules, we neglect any electrostatic interaction. This assumption is well justified in presence of Debye screen-
ing which, inside living cells, has a length scale of a few Angstroms. It follows that, for the range of average 
intermolecular distances which is of interest here (that is, –~10 10 Å2 3 ), the contribution of electrostatic fields is 
negligible. To the contrary, electrodynamic fields of sufficiently high frequency are not screened in water also in 
presence of freely moving ions, as it follows both from theory and dielectric spectroscopic experiments for 
ω > 2.5 × 102 MHz8. As mentioned before the expected frequency for the collective oscillation of a biomolecule is 
around 0.1–1 THz, thus largely above the upper frequency threshold for important screening effects on 
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electrodynamic fields. Collective phenomena are more probably expected in systems of resonant oscillators: for 
such a reason, a system of N identical biomolecules (oscillators) has been considered. Moreover, resonance of 
electric dipole oscillators, describing biomolecules, has been argued to be a necessary condition in order to acti-
vate long range dipole-dipole ( −~Rij

3) electrodynamic interactions5.
In our very simple model the force acting on each charge barycentre of the i-th electric dipole due to the j-th 

dipole is given by

= .± ±ZeF r R E r R( ; ) ( ; ) (3)CED i j CED i j, ,

where ECED(r; Rj) is the value of the electric field in r generated by the j-th dipole whose center is in Rj. According 
to the Classical Electrodynamics (CED), if we assume valid the dipole approximation, i.e. − ‖ ‖ rr Rj j, the 
expression for the electric field takes the form
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where c is the speed of light, = − − ‖ ‖( )n r R r R/j j j  is the direction joining the center of dipole Rj to r, pj(ω) is 
the Fourier Transform of the electric dipole moment of the j-th biomolecule in time domain and ε(ω) is the die-
lectric constant of the medium.

For the range of frequencies we explore (ω Ω ≈~ 1 THz), the dielectric constant of an electrolytic aqueous 
solution can be assumed to be real ω ωR Ie ( ( )) m( ( ))   and approximatively constant εWS(Ω) ≈ 3. Moreover 
both the intermolecular average distance Rij ≈ 103 Å and the characteristic linear dimensions r0 ≈ 10 Å are much 
smaller than the characteristic wavelength of the electromagnetic field  c2 /( ) 5 10 Å7λ π ω= × . This allows to 
assume that the electromagnetic field has the same value for both centers of charge of each biomolecule, i.e. 
ECED(r+,i; Rj) = ECED(r−,i, Rj) = ECED(Ri; Rj), and that any retardation effect can be neglected, i.e. λ R / 1ij . With 
these approximations the acceleration of the i-th dipole is directed along ̂ri and due to the interaction with the j-th 
dipole reads as
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is a characteristic frequency describing the strength of the dipole-dipole interactions. Moreover

ζ = 


⋅ ⋅ − ⋅ 
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is a geometrical factor depending of the orientation of the electric dipoles and rj(ω) is the Fourier Transform of 
rj(t).

Biological aqueous environment as thermal bath. This work is inspired by the request for observables 
in real biological systems at molecular level that can detect the presence of long-range electrodynamics interac-
tions among biomolecules. As all biomolecules in real biological environment are in aqueous solution, we have 
to take into account the presence of surrounding water molecules. Though recent studies reveal that the water in 
biological system can have a highly non trivial behaviour with respect to electrodynamic fields generated by the 
electric dipole of biomolecules9–13, in this article we will assume the surrounding water to play simply the role of a 
thermal bath. As a consequence of this, the presence of water molecules can be schematized via the introduction 
of a stochastic noise (thermal fluctuations) and a viscous friction term (dissipation) in the equation of motion 
for oscillating electric dipoles. In particular friction viscous forces are due to the aqueous surrounding medium 
considered as a homogeneous fluid with viscosity ηw. We assume that the expression of the viscous force is given 
by Stokes’ Law acting on each barycentre of electric charge (positive and negative)

γ γ πη= − =±
±

t
F

dr
d

6 (8)i
i

i Wvisc,
, 

where  is the hydrodynamic radius of a typical biomolecule (~10Å).
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From Eq. (8) it follows that the acceleration on the dipole length is given by
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On the other hand the stochastic forces are due to the collision of water molecules and freely moving ions on 
the biomolecules and they correspond to the realization of a thermal bath at temperature T. In particular these 
forces, acting directly on the charge barycentres of each biomolecules, can be described according to the following 
expression

γξ= Ξ Ξ =± ± t k TF ( ) 2 , (10)i i Bstoch, ,

where ξi(t) represents white noise whose characteristics along each Cartesian component α, β = x, y, z are given by
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The minus sign in the correlation term is due to the constrain we impose for thermal noise

ξ ξ= − .+ −t t( ) ( ) (12)i i,

Such a condition does not take place in general for a real physical system but it has been implemented to pro-
vide a consistent realization of a stochastic system such that the center of mass of each molecule is fixed. With this 
prescription the stochastic force along the dipole direction is given by

ξξ
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External forcing to produce out-of-thermal equilibrium conditions. In5 it has been shown that 
long-range interactions among biomolecules can be present if the system of oscillating dipoles is maintained 
in out-of-thermal equilibrium. To achieve this goal a forcing term FNE,i(t) has been included in the equations of 
motion for the electric dipoles in order to ensure an external injection of energy. The explicit form of the force 
FNE,i(t) depends on the specific process that is chosen to inject energy into the system. In particular, a possible 
mechanism that has been used recently in THz spectroscopy experiments to detect collective giant oscillations in 
biomolecules, is the injection of energy in vibrational modes through the vibrational decay of the excited fluoro-
chromes (i.e. fluorescent dye molecules) attached to each biomolecules6. This process can be represented choosing 
the following explicit form for the forcing term

ω ω φ=F t A f t( ) ( ; , ) (14)NE i NE i i, , pul pul pul

where fpul is a pulse-like function of the form
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The coefficients in the former equation have been chosen such that the integral of the function fpul over a 
period πω= −T 2pul pul

1 respects the following normalization
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With this choice it is clear that ANE,i corresponds to the momentum transferred by the fluorochrome to the 
protein in a time πω −2 pul

1. The energy losses in vibrational decay can be estimated to be of the order ΔEpul = hΔν−
fluor where Δνfluor is the difference among frequencies of absorbed and emitted light by the fluorochrome and h is 
the Planck constant; consequently, if mfluor is the mass of the fluorochrome, the momentum transferred to the 
biomolecule can be approximated by

νΔ ≈ Δ = = .˙m r h m A A( ) 2 (17)i i NE i NEfluor ,

Equation of motion for the system of oscillating interacting dipoles. The equations of motion that 
describe the dynamics of the system with mutually oscillating dipoles are
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where all the biomolecules are assumed to be identical so that they all have the same characteristic frequencies 
ωi = ω0 and Λi = Λ.

In order to simplify the discussion we rescale the system according to

μ τ
ω

λ λω
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that substituted in Eq. (18) give the following system of stochastic differential equations of first order
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Choice of numerical parameters in eq. (20). The numerical values of parameters that appear in Eq. (20) 
have been estimated for a realistic biological system. In particular the characteristic fundamental scales for the 
system have been fixed as following: (i) the typical mass scale of a biomolecule μ = 1.66 × 10−24 Kg = 1 KDa; (ii) 
the characteristic length scale of a biomolecule λ = 10−9 m; (iii) the characteristic frequency of the collective oscil-
lations for a biomolecule ω0 = 1012 s−1. Moreover, since we would test the eventual emergence of self-organized 
synchronization, we consider a set of identical molecules in order to maximise the probability of observing it; 
therefore we assume =

∼ 1i , =∼m 10i  and λ= x r / 5i i eq0 ,  for all i = 1, … N according to characteristic dimen-
sion and masses of biomolecules.

The parameter that fixes the characteristic length for the emergence of non linear phenomena has been settled 
to be Λ .

∼
 0 85. The temperature of the system has been settled at T = 300 K and consequently for our choices 

= . × −2 5 10bath
3 , while water viscosity is η . × ⋅−

 8 54 10 Pa sW
4  and η = .


0 514W  yielding Ωfrict,i = Ωfrict = 0.97. 

With our choice of free parameters of the system, the strength of thermal noise results Ψ . ×
∼ −
 4 4 10 2. The fre-

quencies associated to the electrodynamic interactions Ωij
2 can be expressed in terms of adimensionalized units
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where Rij is the mutual distance between the centers of the dipoles i and j expressed in unit of λ and ∼m is the mass 
of a molecule expressed in adimensionalized units. In the performed simulations the position of each dipole rep-
resenting a biomolecule is assigned in a cube box of side = 〈 〉l N d1/3 , i.e. the components of the vector position of 
the center of each dipole have coordinates = =

∼ l l x y zR x ( , , )i R R R Ri i i i
, with ∈x y z, , [0, 1]R R Ri i i

, where N is the 
total number of dipoles and 〈 〉d  is the average intermolecular distance in λ units. As a reference case in our simu-
lations the parameters have been chosen to be =∼m 10, Zi = 1000, while the average intermolecular distance 

λ〈 〉 = 〈 〉 = . × = . × −
 d d m1 6 10 Å 1 6 103 7 . The reason for choosing such a large value of Z is justified under the 

hypothesis that the surrounding water molecules participate to the effective dipole of each biomolecule and 
enhance it5,9. Therefore for the considered choice of parameters Ω . × −~ 2 3 10ij

2 3. Finally, in order to consider 
different cases with stronger interactions (corresponding to shorter average intermolecular distances, for 
instance) the coupling term is multiplied by a factor K > 0 with respect to the reference case just discussed, i.e.

ω π μλ
Ω =

| − |
= Ω | = Ω= . ×⟨ ⟩ ⟨ ⟩~ ~ ~

e Z
mN d

K K
x x

1 2
4 (23)

ij
WS R R

ij d ij ref
2

0
2

2

3

2

3
2

1 6 10 ,
2

i j

2

and by introducing Eq. (23) in Eq. (20) we obtain
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This paper is intended as a first feasibility study for the detection of long-range electromagnetic interactions 
amongs biomolecules in aqueous solutions via a spectroscopic observable. In laboratory conditions the only 
parameter concerning molecule space configuration and orientation that one can easily control, is the biomole-
cules concentration, i.e. the intermolecular average distance. Therefore we investigate the emergence of collective 
behavior between biomolecules by varying the average distance among dipoles that corresponds in our model Eq. 
(24) to vary K. On the other hand, in this work we do not investigate the role played by spatial correlation of the 
position and orientation of the dipoles in the appearance of a spectroscopic signature of the long-range electro-
dynamic dipole-dipole interactions. The study of dependence of spectroscopic observables on spatial correlations 
could be very interesting in this framework but we postpone to future work this investigation.

The parameter pul  can be estimated assuming that the energy injection on each biomolecule is due to the 
vibrational decay of a fluorescent dye. It is realistic6 to consider a difference between the absorbed and emitted 
frequency of the order of Δ × −

v 5 10 sfluor
13 1 and .∼

m 0 6fluor , thus yielding . × −
 1 4 10NE

2 .
Finally, the characteristic frequency for the energy transfer Ωpul is one of the most delicate parameters to be 

settled. This term accounts for the continuous injection of energy into the system, however the release must be 
done without perturbing too much the oscillating behavior, therefore we can assume that Ω Ω −� � 10i pul

2.

Numerical Results
The reported analyses have been done using a single system size (N = 50) and random initial conditions both for 
positions and velocities. However, similar results have been obtained for N = 100, 200 (not shown). The collec-
tive evolution of the population and in particular the level of coherence is usually characterized in terms of the 
macroscopic field

∑ρ = = θΦ

=
t r t e

N
e( ) ( ) 1 ,

(25)
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N
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1
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1
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where the modulus r1 is an order parameter for the synchronization transition being one ( −N( )1/2 ) for synchro-
nous (asynchronous) states, while Φ is the phase of the macroscopic indicator14,15. However, in our case, the 
molecules are pivoted to the center of mass and cannot rotate: the effective degree of freedom of these objects 
consists in an elongation/shrinkage along the direction identified by the mutual distance between the two centers 
of charges. Therefore it is not possible to describe the movement of the dipole in terms of an oscillator rotating 
along the unit-circle via the identification of a time-dependent phase. The solution that we have adopted is to 
calculate the phase of the single molecule by using the inversion formulas
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to associate a phase θi ∈ [−π, π] according to
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In the following we present two set of parameters: a first one corresponding to the values discussed in Sec. II F 
and a second one, where we arbitrarily increase the thermal noise to investigate the robustness of the system and 
the emergent collective effects. The first set of parameters has been used to find the results shown in Figs (1–4). In 
this case the calculation of the order parameter r1 does not lead to the identification of emergent (phase) synchro-
nization in the system; in particular r1 does not show any dependence on the coupling constant (see Fig. 1, panels 
(a) and (c)), as we would expect when the molecules are interacting with increasing strength. On the other hand if 
we calculate the order parameter usually employed to identify the emergence of 2-clusters = ∑ θ

=( )r t e( )
N j

N i t
2

1
1

2 ( )j , 
we clearly observe a transition to cluster synchronization already for small coupling constants (see Fig. 1(c)). This 
is confirmed if we calculate the distribution of positions and velocities of the molecules (see Fig. 2, panels (a–i)). In 
particular, if we look at the phase space (x, v) it emerges clearly that the system splits naturally in 2 clusters and the 
distance between the clusters increases if the single elements are coupled. For stronger coupling more clusters 
emerge leading to a partial cluster synchronization. Moreover the probability distribution functions of the posi-
tions reveal an increase of the elongation towards values that turn out to be not realistic from a bio-physical point 
of view if the coupling constant is too big K( 1). Only the probability distribution profile of the velocities 
remains unchanged if the coupling constant and, therefore, the distance among the dipoles, is changed.

A better insight of the emergence of a collective behavior can be achieved if we consider the total dipole 
moment

∑= −
=

P t tx x( ) ( )
(28)i

N

i i
1

,0
2

with xi = xi(cos φI sin βi, sin φI sin βi, cos βi). P(t) represents the ensemble average of the projection of the dipole 
position in the cartesian coordinates system X, Y, Z. The biomolecule in our model is identified via the intermo-
lecular mutual distance between the two centers of charges measured along the radial x direction and we need 
to express this variable in cartesian coordinates. In other words, for each molecule we have projected the dipole 
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position along the directions X, Y, Z, thanks to the respective projection angle βi of each molecule’s radius to the 
Z-axis and φi, projection angle of xi to the X-axis in the XY plane. These angles are generated together with the 
initial conditions and do not vary in time.

Due to the fact that the system is not deterministic and a white noise source is present into the differential 
equations, we have developed a method similar to the second-order Runge-Kutta one for solving numerically 
ordinary differential equations. In particular we have implemented the Heun method16 in the Runge-Kutta algo-
rithm as suggested in17, and we have used an integration time step 0.002 to perform the simulations. In addition 
to this, in order to compare the results for different coupling constants and for different strengths of the thermal 

Figure 1. Synchronization properties of the system. Order parameters r1 (a), r2 (b) as a function of time for 
different coupling constants. Panel (c) Time-averaged order parameters as a function of the coupling constant 
K. The parameters values used for these simulations are: Ωi = 0.01, xi0 = 5, Ωfrict,i = 0.97 (for every i = 1, …, N), 
Ωpul = 0.1,  = .0 011NE , N = 50.

Figure 2. Panels (a,d,g) Snapshots of the velocities of the single dipoles as a function of their positions for K = 0 
(a), K = 0.1 (d), K = 1 (g). Panels (b,e,h) probability distribution of the positions of the dipoles for different 
coupling constants. The panels refer to K = 0 (b), K = 0.1 (e), K = 1 (h). Panels (c,f,i) probability distribution of 
the velocities of the dipoles for different coupling constants. The panels refer to K = 0 (c), K = 0.1 (f), K = 1 (i). 
The probability distribution functions are obtained by measuring the corresponding variables at regular time 
intervals δT during a long simulation, after discarding an initial transient time. Parameters as in Fig. 1.
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noise, we implemented a low-pass filter to analyse the power spectra. This filter relies on the differentiation prop-
erties of the Fourier transform; in particular, since the Fourier transform of a generic function f is related to the 
Fourier transform of its derivative via the relationship  ν π′ = f ivf v[ ( )] 2 ( ), it is possible to filter the 
low-frequency components of the spectrum just using the Fourier transform of the derivative. The low-frequency 
components that we want to filter out are related to the injected white noise that are not interesting for the scope 
of this work, i.e. finding a mark of emergent collective behavior.

Therefore we calculated the power spectrum of dP/dt to investigate the role played by the interactions among 
the dipoles to enhance a collective motion. While non-coupled dipoles show a peak at frequency ≈0.280 ± 0.006 
(Fig. 3(a)), as soon as a small coupling is present in the system, the interactions among the dipoles get stabilized 
and a peak at lower frequency emerges already for K = 0.25 (Fig. 3(b)). However the eigenmodes emerging for 
small coupling are destroyed for bigger coupling, where the non-linearity in Eq. (24) prevents this self-organized 
behavior at small frequencies (Fig. 3(e)). The peak at small frequency emerges again for K ≥ 19 (Fig. 3(f)), but the 
intensity shown is smaller than before. On the other hand the main peak moves to higher frequencies for increas-
ing coupling, but the intensity is more and more depressed (Fig. 3(g,h)).

A summary is presented in Fig. (4), where the peak intensity and the corresponding frequency values are 
given as a function of the coupling; while the secondary peak emerging at low frequency value for K ≥ 19 remains 

Figure 3. Investigation of the emergence of a collective behavior as a characteristic peak in the power spectrum. 
Panels (a–h) Power spectrum of dP/dt for different values of the coupling constant K and for thermal noise 
strength Ψ∼i = 0.044. The black curve represents, in each panel, the power spectrum of the system without 
coupling (K = 0). The other curves shown are, respectively, for K = 0.1 (a); K = 0.25 (b); K = 1 (c), K = 5 (d); 
K = 10 (e); K = 19 (f); K = 21 (g); K = 31 (h). The parameters values used for these simulations are: Ωi = 0.01, 
xi0 = 5, Ωfrict,i = 0.97 (for every i = 1, …, N), Ωpul = 0.1,  = .0 011NE , N = 50.
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almost stable and constant, the primary peak, already visible for small coupling (K = 0.25) changes its form and 
shifts towards higher frequency values.

The results for the second set of parameters are given in the Figs (5 and 6). We refer to the Supplementary 
Information (Sec. II) for the analysis of the synchronization level for this second set of parameters. While in 
absence of interactions (K = 0), the system shows a single pronounced peak at frequency ≈0.488 ± 0.006, once 
the interactions are active (K > 0), another peak arises at smaller frequency ≈0.263 ± 0.013. By increasing the 
value of K we observe an increase of the peak at lower frequency, to which corresponds a decreasing of the peak 
at higher frequency: a collective motion is enhanced due to interaction, while the motion corresponding to the 
non-connected situation is depressed (see Figs 5, panels (a–h) and 6(a)). On the other hand the position of the 
peak (i.e. the corresponding frequency value) does not change significantly if we increase the coupling constant 
(see Fig. 6(b)); the more evident increasing ratio for K > 20 is related to the fact that power spectra become richer 
and richer for higher coupling and secondary peaks arise. One of these secondary peaks (the main one) emerging 
at bigger coupling constant is also reported in Fig. 6 (panels (a,b)), and it is termed “Third Peak”.

Finally, if we analyze in more detail the behavior of the first peak, related to the emergent collective motion, 
as a function of the coupling constant, it is possible to identify two different scales, once the figure is plotted in 
log-log scale (Fig. 6(c)). In particular, the different scales present for low coupling constant (K < 5) and for suffi-
ciently strong coupling (K > 10) denote a transition between two different dynamical behaviors: the cross-over 
between two different regimes, from the one dominated by individual asynchronous behavior, to the one domi-
nated by collective motion, with strongly interacting oscillators, is thus compatible with these two different scales.

If we now investigate the role of the thermal noise strength, we obtain a stochastic resonance effect18: the signal 
at low frequency (≈0.28 ± 0.09) can be boosted by adding white noise to the signal, which contains a wide spec-
trum of frequencies. The frequencies in the white noise spectrum corresponding to the original signal’s frequen-
cies resonate with each other, thus amplifying the original signal (i.e. the signal at low frequency) while not 
amplifying the rest of the white noise. Furthermore the signal-to-noise ratio is increased, while the added white 
noise is filtered out thanks to the band-pass filter that we have implemented calculating the power spectrum of 
dP/dt. In particular the low frequency peak, that corresponds in our case to the collective motion, is more visible 
for thermal noise strength Ψ∼ = 0.03, to which corresponds a maximum in the peak high (see Fig. 7 panels (a,b)). 
This peak is depressed for higher temperature and less likely to be revealed. On the other hand the peak at high 
frequency (≈0.56 ± 0.22), corresponding to the dynamics of isolated dipoles, can be also boosted by adding white 
noise into the system, but it does not decrease as significantly as the former one for higher temperatures, thus 
meaning that the single dipoles in this model are able to react to big level of noise, even though this is physically 
not plausible, since we would expect that dipoles will break up for high temperatures.

Discussion
Let us now comment about the physical meaning, and about the prospective relevance, of the results described in 
the previous Sections. As repeatedly stated, the present study was motivated by the need of finding an experimen-
tal strategy - complementary to the diffusion-based one already discussed in3–5 - to detect the possible presence 
of electrodynamic attractive forces between biomolecules. Such a possibility emerges in the following framework. 
By pumping energy in the biomolecules of an aqueous solution, that is by keeping these molecules warmer than 
the solvent (out-of-thermal equilibrium), when the input energy rate exceeds a threshold value, then all, or almost 
all, the excess energy (that is, energy input minus energy losses due to dissipation) is channeled into the vibra-
tional mode of the lowest frequency. In other words, the shape of the entire molecule is periodically deformed 
resulting in a “breathing” movement6. In doing so the biomolecules behave as microscopic antennas that absorb 
the electromagnetic radiation tuned at their “breathing” (mesoscopic) oscillation frequency. But antennas at the 

Figure 4. Dependence of the system’s characteristic frequencies on the coupling constant. Panels (a,b): Peak 
height (a) and frequency value (b) of the first two main peaks that characterize the dynamics of the system. Red 
diamonds identify the primary peak, black dots the secondary one. Parameters as in Fig. 3.
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same time absorb and re-emit electromagnetic radiation, thus, according to a theoretical prediction, these anten-
nas (biomolecules) can attractively interact at a large distance through their oscillating near-fields, and through 
the emitted electromagnetic radiation, provided that these oscillations are resonant and thus, take place at the 
same frequency6. The still open question is whether these electrodynamic interactions can be strong enough to be 
experimentally detectable, which would mean, in the positive case, to have some prospective biological relevance.

In the model of an aqueous solution of biomolecules that we have tackled, each individual molecule is assumed 
to be driven to an out-of-equilibrium mesoscopic vibrational mode which, in turn, excites an attractive electrody-
namic force field associated with a −1/r3 potential, where r is the intermolecular distance. By setting the parame-
ters of the model to physically realistic values, we have numerically investigated the effect of varying the strength 
K of the mutual dipole-dipole electrodynamic interaction. The new observed phenomenon, shown in Section III, 
is the appearance of a collective behaviour involving all the molecules of the system, which is identified through 
K-dependent spectral features of a suitable macroscopic observable P(t), defined in Eq. (28). Furthermore, the 
analysis of the level of coherence in the system, done in terms of the standard Kuramoto order parameter r1 and 
of the 2-cluster order parameter r2, shows that the collective dynamics cannot be simply traced back to synchro-
nization. In particular, the order parameter r1 measures the level of synchronization, while r2 measures the degree 

Figure 5. Investigation of the emergence of a collective behavior as a characteristic peak in the power spectrum. 
Panels (a–h) Power spectrum of dP/dt for different values of the coupling constant K and for thermal noise 
strength Ψ∼i = 0.46. The black curve represents, in each panel, the power spectrum of the system without 
coupling (K = 0). The other curves shown are, respectively, for K = 1 (a); K = 2 (b); K = 5 (c), K = 10 (d); K = 21 
(e); K = 31 (f); K = 41 (g); K = 50 (h). The parameters values used for these simulations are: Ωi = 1, xi0 = 5, 
Ωfrict,i = 0.105 (for every i = 1, …, N), Ωpul = 0.1,  = .1 4NE , N = 50.
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of cluster synchrony in the system. Both order parameters oscillate irregularly thus implying collective irregular 
dynamics, irrespectively of the regular, periodic (breathing) behavior of the single dipole units (see also Fig. 4(a,b) 
in the Supplementary Information). Due to the combined effect of an external periodical forcing, of the presence 
of noise and of the interactions among biomolecules, we observed a self-organized formation of phase clusters 
characterized by different velocities and leading to (possibly) chaotic or quasiperiodic behavior at the macro-
scopic level. The emergence of nontrivial collective dynamics in systems composed of elements whose evolution 
is extremely simple, is a well-known phenomenon observed in complex systems. In particular chaotic irregular 
behavior emerging from regular unit dynamics has been seen in19, while the emergence of quasiperiodic motion 
has been shown in systems of oscillators20, neuron models21 and rotators22.

From an experimental point of view, this means that by performing spectroscopic measurements at different 
concentrations of the solvated biomolecules we could detect the presence of electrodynamic intermolecular inter-
actions. Varying the concentration C of the solution entails the variation of the average intermolecular distance 
〈d〉 according to the relation 〈d〉 = C−1/3. And varying C would be a practical way of experimentally changing 
the parameter K of the model. The variable P(t), represents the ensemble average of the projection of the dipole 
positions in the cartesian coordinates system: this is a spectroscopically measurable observable. Moreover, being 
related with the overall dipole moment of the solution, it can directly probe the emergence of a collective behav-
iour of the solvated molecules, collective behaviour which can only be driven by the presence of intermolecu-
lar interactions. A spectroscopic approach would thus entail a dichotomic, clear-cut, answer: if nothing would 
change in the absorption spectrum of the solutions at different concentrations, this would indicate that the sol-
vated molecules do not interact at a (large) distance, to the contrary, concentration dependent spectral features 
would mean that the solvated molecules interact at a distance. In conclusion, the results reported in the present 
work outline a very promising experimental strategy - complementary to the diffusion-based one - to ascertain 
whether biomolecules can interact through long-range electrodynamic forces.

Figure 6. Dependence of the system’s characteristic frequencies on the coupling constant. Panels (a,b) Peak 
height (a) and frequency value (b) of the first three main peaks that characterize the dynamics of the system. 
Panel (c) Fitting of the dependence of the peak height on the coupling constant. Fitting values are A = 6188, 
4 ± 0.5, b = 0.75 ± 0.03. For all the panels the black dotted curve represents the first peak, the red diamonds 
curve represents the second peak and the square green curve represents the third peak. Parameters as in Fig. 5.

Figure 7. Response of the system under the effect of the thermal noise strength. Panel (a) Power spectrum of 
dP/dt for different values of the thermal noise strength and for coupling constant K = 5. Panels (b,c): Peak height 
(b) and frequency value (c) of the first two main peaks that characterize the dynamics of the system. Parameters 
as in Fig. 5. The values of the different thermal noise strengths reported in the caption of panel (a) and the axis 
label in panel (c) must be intended as Ψ∼: the ~ has been suppressed in the figure for the sake of simplicity.
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