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Abstract: We review here theories and evidence of a cellular electrodynamic 
field in the kHz–THz region and its biological relevance. The endogenous  
cellular electrodynamic field has been predicted to contribute to the organiza-
tion within the cell and to interactions among the cells. Any cellular pulsed or 
oscillatory process, which involves electrically charged or electrically polar  
molecular structure, generates an electrodynamic field. Energy supply to and 
low damping of an oscillatory process are necessary conditions for generation of 
a field, which is of higher intensity than the field of thermal origin. We describe 
cellular processes, which can give rise to an electrodynamic field in the kHz–
THz spectral region and are likely to be fulfilling necessary conditions of energy 
supply and low damping. Our focus is on microtubule electromechanical vibra-
tions, but also electronic conduction processes in DNA and proteins in general 
are briefly reviewed. We also review and assess experimental works aiming to 
detect cellular radiofrequency fields directly or indirectly. We conclude that  
evidence for the necessary physical conditions for cellular electrodynamic field is 
accumulating. However, there is still little direct experimental evidence for 
kHz–THz electrodynamic field of nonexcitable cells. We believe that near  
future can bring significant progress in this research field if appropriate cutting 
edge technologies in detection techniques are used.  
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1. Introduction 

Biological phenomena that cannot be reduced to direct chemical “contact” 
interaction between molecular partners have always either attracted atten-
tion of some scientists or scared off and discouraged others due to an appar-
ent taste of mystery as was the case, e.g., in the field of bioelectricity and 
electrophysiology  (Geddes and Hoff, 1971; Cajavilca et al., 2009). However, 
a rigorous scientific description of bioelectric phenomena became possible 
with the conceptual and technological progress enabling the clarification of 
physical processes underlying electrophysiology.  Nowadays, the existence of 
electric activity of cells is well accepted; its biological importance in case of 
electro-excitable cells is indisputable, e.g., for nerve and muscle cells of 
higher organisms. In addition, these electrophysiological phenomena are 
observed and studied for frequencies of a few kHz (Buzsaki et al., 1992; Col-
lins et al., 2001) and are not expected to exist at higher frequencies  
(> 1–10 kHz). 
 Yet, let us imagine, on the one hand, a physicist who knows that the 
electromagnetic field on Earth (also due to cosmic radiation) displays much 
broader frequency spectra (see, e.g., in Chapter 2 of this book). He may ask 
whether biological systems that evolved on Earth generate an electromag-
netic field of a broader frequency range, say in kHz–THz region, than the 
one which is in intense focus of current electrophysiology? A biologist, on the 
other hand, might want to know whether such frequencies – assuming they 
exist – have a function, i.e. are of biological relevance. Could such cellular 
electromagnetic fields explain biological phenomena, which we either had 
overlooked or neglected because we considered them as artifacts since they 
did not fit into our concepts? The latter being, for example, interactions be-
tween bio-molecules that are faster and occur over larger distances than 
allowed by the classical model of diffusion-based distribution of molecules. 
Furthermore, if there was evidence - from at least a small number of exper-
iments – for a high frequency biological electromagnetic field, we would like 
to know about the structures and processes that generate these cellular 
electromagnetic fields. 
 Electromagnetic fields are physical quantities directly measurable via 
their force effects. Therefore, using the proper technology, experimental evi-
dence for cellular electrodynamic fields can be obtained1. This chapter 

                                                 
1 There is no strict difference between the terms electromagnetic and electrodynamic 
fields. With the prefix bio-, a term bioelectromagnetism is used to denote endogenous 
electromagnetic fields of biological systems. Yet, again, literature on bioelectromag-
netism almost exclusively deals with low frequency fields (< kHz), while we stress the 
high frequency fields (> kHz). One can find in literature both terms bioelectrodynam-
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summarizes the foundation for cellular kHz–THz electrodynamics. It there-
by focuses also on the cellular origin of the field. 

2. Why to research cellular electrodynamic fields 

The working hypothesis of several authors is that the endogenous cellular 
electrodynamic field has an organizing function within cells and mediates 
interactions between cells. 

2.1. Role of fields in intracellular processes 

The role of the endogenous cellular electrodynamic field has been pre-
dicted as (i) transporting reaction components and (ii) driving the kinet-
ics of chemical reactions (Pokorný et al., 2005b,a; Pokorný, 2001). The 
theory on the cellular field, furthermore, predicts that certain cellular 
structures create spatially and dynamically complex patterns (local min-
ima and maxima of field intensity) of the electrodynamic field (Cifra et 

al., 2010; Havelka et al., 2011; Cifra et al., 2011b). This inhomogenous 
electric field pattern acts by force on molecules adding a deterministic 
component to their diffusion movement and thereby helping to organize 
the movement of the reaction components (Pokorný et al., 2005b,a; 
Pokorný, 2001). In addition, the spatial and temporal organization of 
larger structures of the cell, i.e. the positioning of organelles and mac-
romolecules) can be influenced by the electrodynamic field in ways simi-
lar to those described above (Cifra, 2012). Note that the recruiting of 
molecular reaction partners by long-range electrodynamic interactions 
has already been predicted by Fröhlich (Fröhlich, 1968b, 1972, 1970), 
later on again by van Zandt (Van Zandt, 1978) and recently re-assessed 
(Preto et al., 2012). Furthermore, electrodynamic processes are assumed 
to play a significant role in cellular signaling  (Priel et al., 2005, 2006) as 
well as energy transfer (Cope, 1973). Finally, some researchers suggest 
that the disturbance of the endogenous cellular electrodynamic processes 
plays an important role in cancer (Pokorný, 2012). 

2.2. Role of fields in intercellular processes 

Multiple authors have performed experiments that show effects at distances 
that were not predicted by a molecule-based diffusion model. 
 One class of experiments relates to the so-called dielectrophoretic 
effect of cells on surrounding particles. This was extensively investigated 
by Pohl et al. (Pohl, 1980b,a, 1981; Roy et al., 1981; Pohl et al., 1981; 

                                                                                                      
ics or cellular electrodynamics, the former being more general without scale limita-
tions and the latter limited to the scale of the cells. 
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Pohl, 1982, 1983; Rivera et al., 1985). In this effect, cells are attracting 
or repulsing micron sized dielectric particles. To test these assumptions, 
Pohl et al. were changing (i) the conductivity of the medium, (ii) the die-
lectric constant of the particles, or they were (iii) switching off the me-
tabolism of the cells. They concluded that the observed changes in 
movement of the particles around individual tester cells were caused by 
an oscillating electric field that is, furthermore, generated in accordance 
to the metabolic activity of the cells. 
 Another class of theories and experiments was focused on electromagnetic 
force interaction between cells. Based on the assumption of Fröhlich’s coher-
ent electric oscillations generated by cells, Pokorný theoretically analyzed, the 
mutual attraction of cells (Pokorný, 1980; Pokorný et al., 1983; Pokorný and 
Wu, 1998). His results suggested that cells should be able to interact electro-
magnetically (attract or repulse) up to the distance of 10 micrometers.  There 
were also several experimental tests carried out on leukocyte sedimentation 
rate and adherence (Jandová et al., 1987). Sedimentation rate of cells and 
measured force between the cells and glass slides substrate coincided with 
theoretical predictions of adherent force based on cellular electrodynamic ac-
tivity. Most famous are the results of Rowlands et al. who observed that 
roleaux formation of erythrocytes does not simply follow Brownian laws of 
motion. It was suggested that the cellular electrodynamic fields generated as 
described by the theory of Fröhlich gives a plausible explanation for this com-
plex group of cellular interactions (Rowlands, 1983; Rowlands et al., 1981, 
1982; Sewchand and Rowlands, 1983). Fröhlich predicted in his theory that 
coherent electric oscillations of biosystems mediate mutual long-range (on 
cellular/ molecular scale) resonance-like attraction. However, one has to be 
careful about experimental details and interpretation of the results. 
 Many experiments on electrodynamic cellular interactions were per-
formed with a focus on the optical field of cells of many species (see Table 
2. in (Cifra et al., 2011a) or Ch. 8 in this book). There are, indeed, strong 
indications that the cells are able to interact through their endogenous 
photon emission under certain conditions. However, this refers to frequen-
cies in the visible and UV region while here we focus on frequency ranges 
of microwaves and below. 
 To summarize this section, there are many interesting theoretical predic-
tions and experimental observations that take into account the cellular elec-
trodynamic field. Moreover, some of the observations can be hardly explained 
without assumption of non-chemical interaction that acts over distance. Nev-
ertheless, it needs to be emphasized again that one has to be very careful 
about experimental details and interpretation of the results as various other 
non-field-like physicochemical phenomena can contribute to the observed re-
sults. 
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3.  Which structures and processes generate the cellular  

electromagnetic field 

3.1. Basis of electromagnetic field generation 

All objects, whether living or nonliving, are continuously generating elec-
tromagnetic fields due to the thermal agitation of the particles that possess 
charge. The thereby generated electromagnetic spectrum is described by 
Planck’s law for the ideal case of a blackbody in thermal equilibrium. Elec-
tromagnetic fields generated thermally have a random, non-coherent char-
acter. However, our question is whether the electromagnetic field of a bio-
logical entity is an electromagnetic field generated by an object due to its 
temperature or whether it is part of a biological property of a living system. 
 Physically, living biological systems are thermodynamic systems in a non-
equilibrium state (i.e., they have a different energy level than their surround-
ing) and they are open (i.e., they can transfer energy and matter through the 
system). Such systems may locally decrease entropy (increase order).  Since 
living systems are not in a thermal equilibrium, their electromagnetic (or gen-
erally, vibrational) spectrum may also deviate from thermal spectrum given 
by Planck’s law. Furthermore, the important question is whether the generat-
ed biological electrodynamic fields can have a coherent component, since co-
herence enables very efficient energy and information transfer via the spatial 
and dynamic formation of interference patterns. The answer may be at least 
partially elucidated when we describe the structures and processes that are 
responsible for the generation of the cellular electrodynamic fields. 

3.2. Basis for cellular electrodynamic field generation 

Various cell functions are associated with moving charges in cellular compart-
ments and, hence, generate electrodynamic fields. For example, membrane de-
polarization or neuron firing at several hundred Hz (Buzsaki et al., 1992) gener-
ates oscillations of electric charges with higher harmonics creating an electric 
oscillations with a frequency up to 10 kHz (Collins et al., 2001). However, this 
phenomenon is limited to a group of specialized cells in higher organisms and 
not all cells in an organism are involved in the process of membrane depolariza-
tion. The question arises whether non-specialized cells that are not involved in 
cell membrane depolarization are also capable of generating electrodynamic 
fields, and if so how. A graphical summary of our working model for the genera-
tion of the cellular electrodynamic field is depicted in Figure 1. 
 Generally we can distinguish three types of processes generating elec-
trodynamic fields in cells: 
 

• Mechanical vibrations of electrically polar structures (proteins) 
(kHz–THz) 
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• Free ionic oscillation (Hz–MHz) 

• Electronic oscillations (Hz–THz) 
 

 Additionally, in combination these processes can form quasiparticles2. 
 The above list of types of processes generating electrodynamic fields 
delivers the physically reasonable conceptual boundaries where to look for 
the realization of these processes in cells. As such, there may be multiple 
sources of cellular electrodynamic field finally combining into a spectrally 
and spatially complex total field. Yet, some general necessary conditions 
need to be fulfilled in order to generate nontrivial cellular electrodynamic 
fields: 
 

• Energy supply 

• Low damping of the oscillatory process: The term Quality factor (Q) is 
also often used in this context. Q is inversely proportional to the 
damping rate.  If the damping is high, supplied energy quickly dissi-
pates into all degrees of freedom, i.e. the system is heated up and the 
generated electrodynamic field is only thermal with very broadband 
frequency content. 

3.2.1 Mechanical vibrations of electrically polar structures 

The most straightforward (mechanistic) approach explaining the generation of 
the cellular electrodynamic field is based on vibrations of electrically polar 
biomolecular cellular structures. Such vibrations and modes of biomolecules 
are broadly studied by multiple types of spectroscopies (Barth, 2007; Chou, 
1988; Painter et al., 1982) and, hence are today widely acknowledged. It is not 
surprising that it was concluded that the frequency of vibrations depends on 
both the size and stiffness of the structure and the type of vibrational mode(s), 
since this is very well known from macroscopic physics. 
 Probable structures that lead to the appearance of a cellular field are 
the intrinsic electrically polar structures such as most proteins (Wada and 
Nakamura, 1981; Wada et al., 1985; Nakamura and Wada, 1985)) or mem-
branes. Membranes are electrically polarized due to different electric poten-
tials generated by the presence of ions of opposite charge on both sides. 

                                                 
2 The real elementary particles, which are present in matter and relevant on biologi-
cal scale are electrons, protons and neutrons. Yet, quasiparticles are emergent phe-
nomena that occur in complex nanoscale systems and behave as if the systems con-
tained (fictional) particles. Contrary to modeling with coupled elementary particle 
types, the theoretical work with quasiparticles is very useful since both, the mathe-
matical formalism and the physical understanding significantly simplify the descrip-
tion of field-related phenomena (but limited only to those). 
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To summarize, the basic idea is that the metabolic energy induces vibra-
tions in electrically polar molecules, which, in turn, then generate a cellular 
electrodynamic field. The following section reviews the most important 
works that can be categorized under this idea. 
 

 
 
Figure 1. Working model of the generation of a cellular electrodynamic field. Vibra-
tional (phonons – heat) energy from several metabolic sources is supplied to microtu-
bules and membranes to excite their electrically polar vibrations.  These vibrations 
are expected to work in nonlinear regime (e.g. due to strong static electric field from 
mitochondria) which allows for energy exchange among frequencies (vibration modes) 
and other properties – see text. Organized water surrounding biological structures is 
expected to cause lowered damping, thus increased coherence, of the vibration modes 
compared to bulk water. Frequencies of the biological electrically polar vibrations and 
of thereby generated electromagnetic field are most likely lying in the range kHz–
THz. 
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 Free ions within the cell and electrons/polarons in biomolecules are able 
to oscillate in kHz–THz region (up to only MHz for ions). However, the 
mechanism of how the metabolic energy can excite oscillations of biomolecu-
lar electrons/polarons and free ions in these frequency regions haven’t been 
analyzed yet. 

Fröhlich's theory   

In 1968, Herbert Fröhlich postulated that biological systems exhibit coher-
ent longitudinal3 vibrations of electrically polar structures (Fröhlich, 
1968a,b, 1969). In order to fit into the Fröhlich’s model, a system has to ful-
fill the following necessary conditions: 
 

• electric polarity 

• vibration modes in radiofrequency / THz region 

• sufficient energy supply 

• nonlinearity 
 

 Electrically polar structures contain electric charges. When they vi-
brate, they become able to generate electrodynamic fields. The original 
Fröhlich model was general and as such did not limit this process to any 
particular cellular structure. From his model it follows that when the energy 
supply exceeds a critical level, then the polar structure will enter a condition 
in which a steady state of nonlinear vibration is reached. This would, fur-
thermore, result in energy storage of highly (coherent) ordered fashion in 
single or few degrees of freedom.  This order expresses itself in a long-range 
phase correlation, which is physically similar to superconductivity and su-
perfluidity, where the behavior of particles is communal and inseparable. 
The energy source in this model is metabolic energy, and the nonlinearity4 
of the vibrating system is caused by a strong static electric field. The exist-
ence of very strong static electric fields in the cell membrane led Fröhlich to 
consider cellular membranes as the source of the postulated vibrations. 
 Fröhlich’s model created much enthusiasm in the scientific community.  
Based on his theory, it was predicted that the biomolecular elctrodynamic 
field would appear in the range of 100 to 1000 GHz. While some researchers 

                                                 
3 Longitudinal vibration modes in matter have been considered by Fröhlich (1969), 
because they don’t lose energy by radiation (at least in bulk matter) in contrast to 
transversal vibrational modes as is well known in solid state physics. 
4 A nonlinear system is one that does not satisfy the superposition principle, or one 
whose output is not directly proportional to its input. In the context of Fröhlich’s 
model it is important note that nonlinearity enables transfer of energy between vari-
ous frequencies, which is not possible in linear systems. In Fröhlich model, nonlinear-
ity enables channeling (condensation) of energy into one or few modes (frequencies). 
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used Raman spectroscopy to probe for vibrations in the predicted frequency 
region and reported results apparently confirming the nonthermal vibra-
tions predicted by Fröhlich (Webb et al., 1977; Webb, 1980; Drissler and 
Santo, 1983; Drissler and MacFarlane, 1978; Del Giudice et al., 1985), oth-
ers criticized these results as being an artifact (Layne et al., 1985; Layne 
and Bigio, 1986; Furia and Gandhi, 1984, 1985; Cooper and Amer, 1983). 
Ever since its appearance, Fröhlich’s model continued to inspire studies and 
models that were addressing his original theory (for review see (Fröhlich 
and Kremer, 1983; Fröhlich, 1988; Pokorný and Wu, 1998; Cifra et al., 
2011a; Reimers et al., 2009)). Even though highly skeptical authors 
(Reimers et al., 2009) admit to a certain extent the feasibility of his theory, 
it is not widely accepted that processes as described in Fröhlich’s model are 
really happening in living cells. This is so because the available experi-
mental evidence from studies with biological systems is controversial. 
 Anyone interested in a good and brief description of Fröhlich’s theory 
may read the article (Šrobár, 2012a) where the model is explained in a clear 
and exact language. 
 

 
 
Figure 2. Transformation of food to energy which can (i) perform work (via ATP), e.g., 
in terms of protein motion, (ii) induce vibrations and (iii) heat. Note that heat can be 
also understood as a broad frequency spectrum of vibrations and, further, that oxida-
tive metabolism includes mitochondria-dependent heat generation. 

Microtubules 

After the discovery of the cytoskeleton in 1970s, microtubules (MTs) became a 
serious candidate for being sources of cellular electrodynamic fields. This was 
due to the fact that MTs fulfill the  requirements needed for a Fröhlich system 
and to generate of electrodynamic fields. Nowadays, microtubules are consid-
ered not the only possible candidates but most probable and most widely stud-
ied ones. 
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Microtubule structure and electric polarity 

MTs have a well-known and accepted structure, composed of tubulin heter-
odimer subunits that are electrically highly polar (Mershin et al., 2004; 
Tuszynski et al., 2002). MTs resemble hollow tubes (Dustin, 1984) whose 
growth (driven by tubulin polymerization) is nucleated by centrosomes or 
other microtubule organizing centers. The electric polarity of tubulin heter-
odimer was predicted from its atomic structure (Mershin et al., 2004; 
Tuszynski et al., 2002) and was also probed in several experiments (Mershin 
et al., 2004; Schuessler et al., 2003; Böhm et al., 2005). 

Energy supply to microtubules 

MTs in vivo are characterized by their perpetual alternation between 
growth (tubulin polymerization) and shrinking (MT depolymerization).   
This dynamic instability results from a constant influx of energy via the 
assembly and then followed by the disassembly of GTP rich tubulin hetero-
dimer subunits (Caplow et al., 1994; Caplow, 1995; Caplow and Shanks, 
1996). A further energy supply to MT vibration is assumed to come as a 
fraction of energy used for the movement of motor proteins aligned with 
MTs. Finally, the energy that is dissipated from mitochondria may also 
translate into vibrational MT-movement resulting in the generation of an 
electrodynamic field (Pokorný et al., 2008; Cifra et al., 2010). Mitochondrial 
ATP production by the citric acid cycle has an efficiency of ca. 40%. The re-
mainder of the energy usually dissipates as infrared vibrations as well as 
infrared and optical (Hideg et al., 1991) radiation.  In short, the efflux of 
energy from the mitochondria represents the most significant source of en-
ergy which may lead to the excitation of MT vibrations. The amounts of en-
ergy generated by the above-mentioned processes are well described in the 
literature.  The open question is if this energy can actually excite vibrations 
of microtubules or other structures without immediate dissipation into heat. 

Nonlinearity of microtubule vibrational dynamics 

Mitochondria were also found to be sources of strong static electric fields, 
namely in the range of 106 V/m, presumably due to the creation of a proton 
gradient. This static electric field of mitochondria penetrates up to a few 
micrometers into the cytosol (Tyner et al., 2007). At first sight, this is a con-
troversial finding because in ionic solutions the static electric field should be 
effectively screened by counterions within few Debye lengths, i.e. a few na-
nometers. Yet, some authors argue (Tyner et al., 2007) that the simple ionic 
solution is not a proper model for intracellular water and, instead that a 
complex fluid and gel-like model where the ion-mobility is hampered reflects 
experimental reports much better (Zheng and Pollack, 2003; Zheng et al., 
2006; Pollack et al., 2006). 



Cellular electrodynamics in kHz–THz region 

  

199 

 Most interesting here is the regularly found alignment of mitochondria 
along MTs. It is expected that the vicinity of the two structures combined 
with their electric properties lead to nonlinear electrodynamics of MT 
(Šrobár, 2009; Šrobár, 2012b) as the strong electrostatic fields of mitochon-
dria shifts the vibrations of the microtubules to a nonlinear regime. It is the 
nonlinear regime in Fröhlich’s theory that enables the excitation of polar 
vibrations of molecules above their thermal level so that an electrodynamic 
field around them can be generated. 

Vibrations of microtubule and their damping 

Microtubules are theoretically predicted to display collective vibrations in 
the regions between kHz and GHz (103–109 Hz) region (Sirenko et al., 
1996; Gu et al., 2009; Wang et al., 2009; Deriu et al., 2010). The excitation 
of MT vibrations were the mainstay of the model that was proposed by 
Pokorný (Pokorný et al., 1997; Pokorný 1999; Pokorný et al., 1998) who 
analyzed the longitudinal vibrations with slip boundary conditions: he 
concluded from his calculations that vibrations of microtubule should not 
be not overdamped. 
 Some scientists raised doubts about the possibility of his theory be-
cause they assumed that a viscous cytosol should dampen any vibrating 
cytosolic organelles (Foster and Baish, 2000; Adair, 2002). The cytosol 
could have a dampening effect on organelle vibrations if there was a ”no-
slip” boundary condition between cellular structure and the surrounding 
cytosol. However, it was argued (Pokorný , 2003, 2005) that lowered mobil-
ity of ions in the cytosol results in a ”slip” between microtubules, their 
adjacent ionic layers and the cytosol, making microtubule vibrations in the 
cytosol physically plausible. Even though there are further arguments for 
the plausibility of underdamped microtubule vibrations in vivo (Pokorný et 

al., 2011) the actual quality factor of microtubule vibration modes remains 
still an open question demanding careful spectroscopic studies. Only two 
pioneering published experimental studies on microtubule vibration are 
currently available, but none of them deliver an estimation of the quality 
factor of MT oscillations from measured data (Hameroff et al., 1986; Pizzi 
et al., 2011). 
 To conclude this review about the feasibility of microtubule oscillations, 
the very interesting findings of A. Bandyopadhyay on microtubules should 
be mentioned.  His team performed recent experiments, which go beyond 
the study of vibrational properties of microtubules and include also electron-
ic properties, which are more generally described in subsection 3.2.3. His 
results suggests that microtubules manifest (i) resonant-like response of DC 
conduction to specific applied radiofrequencies (ii) Fröhlich-like condensa-
tion (iii) coherent radiofrequency emission after pumping with radiofre-
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quency signal and other intriguing features (see Bandyopadhyay, 2011, 2012; 
Sahu et al., 2013a,b)., 

Vibrations of other cellular structures 

Technically, any cellular structure or substructure can oscillate at its reso-
nance frequency – eigenfrequency when excited by energy unless strongly 
damped. For example, Smith calculated that a spherical cellular membrane 
has a mechanic resonance frequency of 1010 Hz (10 GHz) (perpendicular to 
the membrane surface) and a mechanical circumferential resonant frequen-
cy of 108 Hz (100 MHz) (parallel to the membrane surface); the electromag-
netic resonance of the cell membrane (again parallel to the membrane sur-
face) occurs at a frequency of 1013 Hz (10 THz) (Jafary-Asl and Smith, 1983). 
 Weak resonances in the region around 36-38 GHz have also been de-
tected on erythrocyte ghosts in suspension (Blinowska et al., 1985). This 
result has been attributed to the vibration modes of the cell membrane 
which roughly fit the prediction of Smith (Jafary-Asl and Smith, 1983). 

3.2.2. Ionic oscillations 

An electrochemical model was proposed by Pohl where he suggested that 
electrodynamic fields can be generated within the cells by the coupling of 
oscillating chemical reactions with physically mobile ions, finally leading 
to charge waves (Pohl et al., 1981; Pohl, 1982). In his model, the oscilla-
tions of ions can be induced by chemical reactions, where the direction of 
oscillations will be steered by filamentous cellular structures. Pohl’s model 
for the generation of cellular electrodynamic oscillations has not been de-
veloped further.  Since many types of chemical reactions generate also 
sound emission with spectra up to 1 MHz (Betteridge et al., 1981; Wentzell 
and Wade, 1989), oscillatory chemical processes up to this frequency can-
not be excluded. However, the current author does not know about the 
existence of periodic high frequency chemical oscillations that come from 
biologically relevant models. 

3.2.3. Electronic oscillations 

One of the necessary conditions for kHz - THz electronic oscillations in bio-
molecules is their electronic conductivity. One biomolecule that is known to 
conduct electrons is DNA (Fink and Schönenberger, 1999; Abdalla, 2011). 
One speaks (for DNA) of a so-called phonon assisted conductivity attributed 
to polarons (Conwell and Rakhmanova, 2000; Endres et al., 2004; Henderson et 

al., 1999), which are quasiparticles that involve charge (here electron) and 
associated deformation of the lattice (cloud of phonons). The DNA polaron-
based conductivity is now a widely and intensively studied scientific field. 
Due to these conductive properties, a collective of authors labels DNA as an 
antenna for electromagnetic fields (Blank and Goodman, 2011). 
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 While proteins were for a long time generally accepted to be                 
non-conducting (Kertesz et al., 1977), some theoretical predictions propose 
conduction or semiconduction to occur in them (Szent-Gyorgyi, 1941; Cope, 
1973). Indeed, there is strong current evidence that metaloproteins enable 
enhanced electron transfer (Gray and Winkler, 2005). It has also been 
shown that aromatic amino acids, such as tryptophan, promote electron 
conduction (Shih et al., 2008). There is, furthermore, a very recent example 
of semiconduction of a metal-reducing bacterial polypeptide named geopilin 
(Reguera et al., 2005; Veazey et al., 2011; Feliciano et al., 2012) found in 
several types of bacteria (Gorby et al., 2006), which led the authors to pro-
pose that conductive bacterial polypeptide nanowires represent a common 
bacterial strategy for efficient electron transfer and energy distribution. 
 The other theory of biological charge conduction and electrodynamic 
generation relates to electrosoliton5. Electrosolitons can be viewed as a qua-
siparticles involving electrons that could provide transport of charge in bio-
logical systems and were considered  as an important contender of electro-
dynamic field generation in the microwave frequency region (Brizhik and 
Eremko, 2003; Brizhik, 2003; Brizhik and Eremko, 2001; Musumeci et al., 
2003). These works have been inspired by a seminal work of Davydov who 
theoretically predicted the existence of solitons in proteins, α-helixes (Da-
vydov, 1979), although his idea was originally dealing with soliton of zero 
total charge (exciton). Physically, there is a tight relation between electro-
soliton and polaron (Brizhik and Eremko, 2003), because they both involve 
charge and interact with lattice vibrations (phonons). However, for a soliton 
to appear, non-linear interactions within the lattice have to occur (Cantu 
Ros et al., 2011). Although other types of solitons (optical, water waves) are 
perfectly accepted to exist and their properties are being technically exploit-
ed in physics, there is still no clear direct and broadly accepted experimental 
evidence for Davydovs solitons or electrosolitons to exist in biological sys-
tems (Austin et al., 2009) and there are ongoing theoretical debates whether 
it can exist at all (Lomdahl and Kerr, 1985; Xiao, 1998). 
 Studies in this subsection indicate feasibility of electron conduction in 
biomolecules. Polaron conductivity is well accepted in DNA and is an ongo-
ing research question in the case of proteins. However, the further two 
fundamental questions remain for the feasibility of electronic oscillations 
in biomolecules: 
 

• How can the metabolic energy input result in collective excitation of 
electron/polaron oscillations? Could such oscillations, give rise to an 
electrodynamic field  

                                                 
5  An electrosoliton is an electrical counterpart of a soliton. Soliton is a self-reinforcing 
solitary wave (a wave packet or pulse) that maintains its shape while it propagates. 
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• Do electron/polaron oscillations exhibit lower damping than electri-
cally polar vibration states (as mentioned in section 3.2.1)? 

4. Experimental evidence for cellular electrodynamic fields 

There is an accumulating evidence for the necessary conditions for genera-
tion of cellular electrodynamic field as described in section 3.2. However, 
apart from various indirect evidence there exist just several pioneering 
works on direct experimental detection of cellular electrodynamic activity. 

4.1. Indirect cellular EMF detection by dielectrophoresis 

An electric oscillation can be detected indirectly using a technique called 
dielectrophoresis (DEP) (Pohl, 1978). In this technique, electric oscilla-
tions are detected as effects of a non-uniform electric field on a neutral 
particle via a polarization force. One of the pioneers in measuring cellular 
electrodynamic fields using the DEP method was Herbert A. Pohl (Pohl, 
1980b,a, 1981; Roy et al., 1981; Pohl et al., 1981; Pohl, 1982, 1983; Rivera 
et al., 1985). In the DEP method, the electric field induces a dipole moment 
in sample particles and the resulting force acting on them is the force of an 
electric field on a dipole. Since Pohl used small particles of a few microme-
ters in size to probe cellular electric oscillations, he often used the term “mi-
cro-DEP” (µ-DEP). In this method, particles were either repelled from or 
attracted to the surface of cells depending on whether particles had a lower 
dielectric constant (BaSO4, SiO2, Al2O3) or higher dielectric constant (Ba-
TiO3, SrTiO3, NaNbO3) than the suspending medium, which was usually 
water-based. Pohl estimated that the frequencies of cellular electrical oscil-
lations were in the radiofrequency range (5 kHz to 9 MHz) (Pohl, 1980b; 
Pollock and Pohl, 1988). In his experiments, he tested several types of cells 
such as bacteria, fungi, algae, nematodes and mammalian cells, all of which 
showed, under suitable conditions, a dielectrophoretic effect interpreted to 
be caused by a cellular electrodynamic field (Pollock and Pohl, 1988). Other 
investigators reported similar findings for diverse cell types including hu-
man leukocytes (Pohl and Lamprecht, 1985; Hölzel, 1990, 2001; Pokorný, 
1990; Jandová et al., 1987). 

4.2. Indirect experimental evidence for cellular kHz–GHz oscillations 

through effects of external fields 

There is large body of experimental work (a few hundreds) on the external 
electromagnetic field resonance effects on (at specific frequencies) biologi-
cal systems, (for a review see Cifra et al., 2011a; Belyaev, 2005a,b). Espe-
cially Russian authors (Betskii et al., 2000; Devyatkov, 1973) interpreted 
these results as a proof of internal cellular electrically polar vibrations 
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being affected by external fields. The idea was that such resonant effects 
are possible only if there are structures in the cell which are able to vi-
brate with high quality factor at the same frequencies as those applied 
externally, i.e. resonate. Their following argumentation was that if there 
is a cellular structure able to resonate (oscillate) with an external electro-
magnetic field, then it is able to generate electromagnetic oscillations un-
der the condition that (metabolic) energy is supplied, see Golant, 1989a,b 
and Devyatkov et al., 1991, p.66 for original Russian texts and Golant 
(1994); Betskii et al. (2000) for English texts. However, the resonant bio-
logical effects of electromagnetic fields can also be explained by other, 
though more complex, mechanisms such as (i) influence of field on triplet 
free radical chemistry (Keilmann, 1986), (ii) hydrodynamic flow due to 
inhomogeneous surface heating of the water-like biological samples 
(Khizhnyak and Ziskin, 1996) and due to hypothesised oscillations of wa-
ter molecule polymers (Sinitsyn et al. (2000)). 

4.3. Direct electronic detection 

Already some work aimed at the direct electronic detection of electrodynamic 
cellular signals has been done (Table 4.3). The first direct evidence for electro-
dynamic field generation in the spectral region of kHz–GHz by cells was at-
tempted to be obtained in a series of experiments that used direct electronic 
detection from a single cell or a suspension of cells. Using a spectrum analyz-
er, Jafary-Asl and Smith claimed to find electrodynamic signals emitted from 
Saccharomyces cervisiae in the range of 7–80 MHz (Jafary-Asl and Smith, 
1983; Del Giudice et al., 1989). Later on Rivera and Pohl (Pohl and Pollock, 
1986) detected a spectrum of signals from the alga Netrium digitus with 
peaks around 7 and 33 kHz.  But Hölzel who extensively analyzed the fre-
quencies of different groups of cells in the MHz region (Hölzel, 1990; Hölzel  
and Lamprecht, 1995, 1994; Hölzel, 2001) disagreed with Jafary-Asl and 
Smith claiming that the frequencies they had reported were mainly artifacts 
probably due to a positive feedback coupling in the amplifier. However, with 
improvement in detection techniques other researchers claimed to success-
fully detect cellular electrodynamic fields, e.g., during the process of mitosis 
of yeast cells, in MHz region (Jelínek et al., 1999, 1996; Pokorný et al., 2001). 
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Organism Frequency or 

wavelength 

References 

Netrium Digitus (Algae) 7 kHz, 33 kHz (Pohl and Pollock, 1986) 

Saccharomyces  cerevisiae 

(yeast) 
 

0.4–1.6 kHz (Jelínek et al., 2009;   
Cifra, 2009) 

1, 7, 50 (60)–80 MHz (Jafary-Asl and Smith, 
1983; Del Giudice al., 1989) 

8-9, 8.2 MHz (Jelínek et al., 1999, 
1996; Pokorný et al., 2001) 

1.5, 2.6, 5.7, 18,  
52 MHz 
 

(Hölzel, 1990; Hölzel and 
Lamprecht, 1995, 1994; 
Hölzel, 2001) 

42 GHz (attempts only,  
not considered  
significant) 

(Jelínek et al., 2002, 2005, 
2007; Kučera, 2006) 

Schizosaccharomyces 

Pombe (yeast) 
3.1, 4.8 MHz (Hölzel, 1990; Hölzel and 

Lamprecht, 1995, 1994; 
Hölzel, 2001) 

frog gastrocnemius  
muscle (electrically stimu-
lated) 

0.2–2 mm (Gebbie and Miller, 1997) 

electrically stimulated  
nerve from blue crab 
Callinectes sapidus 

3–10 µm (Fraser and Frey, 1968) 

 

Table 1. Direct electronic detection of electrodynamic cellular signals up to the THz 
region. Indirect detection of cellular electrodynamic fields, for instance by its dieletro-
phoretic effect, is not included. 
 
 
 Statistical analysis revealed four peaks in detected power during the 
mitosis. It was suggested that these peaks of the cellular electrodynamic 
activity can be related to the microtubules reassembling into the mitotic 
spindle, with binding of chromatids to kinetochore microtubules, and with 
elongation of mitotic spindles during anaphase A and B (Pokorný et al., 
2001). Experiments aimed at the detection of cellular electrodynamic activi-
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ty in the region around 42 GHz (Jelínek et al., 2002, 2005, 2007; Kučera, 
2006) has been carried out with very limited success. 
 A recent review (Kučera et al., 2010) elucidates reasons for the limited 
success of experiments on the direct electronic detection of cellular electro-
dynamic field. Practically all hitherto used measurement systems haven’t 
fulfilled at least some necessary technical requirements which stem from 
identified and predicted biophysical properties of cellular electrodynamic 
sources. Such technical requirements include mainly nanoscopic resolution 
of sensor and suitable input electrical characteristics of preamplifiers. This 
was caused by the ignorance of the early authors on the one hand and also 
by technological limits of that time on the other hand. 

5. Conclusion 

The research of high frequency (kHz–THz) cellular electrodynamics has a 40 
years long history. As the initial enthusiasm to seriously test early theories 
has been hindered by technological limitations, this research field had a 
rather slow scientific evolution. Yet, current technology together with basic 
physical concepts allowed identification of cellular structures and processes 
that could give rise to a cellular electrodynamic field. What is needed now is 
to establish if there is really any nontrivial specific role, i.e. the biological 
relevance of cellular and biomolecular electrodynamics. As electrodynamic 
fields do have the property to act on charged structures and as exactly such 
charged structures cause these fields, we can assume that there exists a 
feedback system between the charged structures and the field. This, howev-
er, is of great significance because it induces the possibility of an electrody-
namic contribution to the organisation of molecular cell processes. We see 
several experimental indications that biological electrodynamic fields may 
mediate the interaction among biomolecules and biosystems. However, the 
development of bioelectro-dynamics bears also a new understanding of phys-
ical interactions in biology presumably not only for the smallest scale of bi-
omolecules but up to the scale of multicellular organisms. 
 Finally, if the hypotheses of a) underdamped electronic/electrically polar 
mechanical oscillations in microtubules and other biomolecules, which 
would be measureable with new generation of sensors and b) the biological 
significance of these oscillations in biomolecular reaction rate and e.g. fur-
ther in mitosis or cell adherence will be confirmed, the future applications of 
bioelectrodynamics could lead to the controlled development of new non- 
invasive diagnostic methods and therapies based on electromagnetic  fields 
and modification of biomolecules, the substrate of endogenous biological  
electrodynamic  fields. 
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