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Abstract. Complex pattern formation requires mechanisms to coordinate indi-

vidual cell behavior towards the anatomical needs of the host organism. Along-

side the well-studied biochemical and genetic signals functions an important 

and powerful system of bioelectrical communication. All cells, not just excitable 

nerve and muscle, utilize ion channels and pumps to drive standing gradients of 

ion content and transmembrane resting potential. In this chapter, we discuss 

the data that show that these bioelectrical properties are key determinants of 

cell migration, differentiation, and proliferation. We also highlight the evidence 

for spatio-temporal gradients of transmembrane voltage potential as an instruc-

tive cue that encodes positional information and organ identity, and thus regu-

lates the creation and maintenance of large-scale shape. In a variety of model 

systems, it is now clear that bioelectric prepatterns function during embryonic 

development, organ regeneration, and cancer suppression. Moreover, genetic 

and pharmacological modulation of the prepatterns resident in physiological 

networks is a powerful modality for controlling growth and form. Recent data 

have revealed the mechanisms by which voltage gradients are transduced into 

downstream transcriptional cascades. Thus, mastery of the endogenous bioelec-

trical signaling pathways will have transformative implications for developmen-

tal biology, regenerative medicine, and synthetic bioengineering.  
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1. Introduction: Bioelectricity and the history of ‘animal spirits’ 

Understanding the mechanisms by which cell-to-cell communication and 

large-scale pattern formation are coordinated in the developing embryo is of 

high priority to developmental biology, regenerative medicine, and oncology. 

Alongside well-characterized biochemical modes of cellular communication 

that regulate cellular behavior during pattern formation there exists an 

important and powerful signaling system that is only now beginning to be 

understood and integrated with canonical biochemical and genetic pathways 

(Adams & Levin, 2013). This system of information exchange functions 

through bioelectrical mechanisms. 

What is endogenous bioelectricity? 

Bioelectricity, in general, refers to signals carried by voltage gradients, ion 

flows and electric fields that all cells receive and generate. Bioelectricity is 

most well known in the context of neuronal excitation in which rapid 

changes in transmembrane potential (Vmem) give rise to rapid action po-

tentials. However, long-term, steady state ion fluxes, electric fields, and 

pH gradients are present in all cells and across epithelial sheets. At the 

cellular level, transmembrane potentials result from the presence of ion 

channels and pumps within cell membranes that function to segregate 

ions in differing concentrations internally and externally. This segregation 

of charges gives rise to transmembrane voltage potentials, usually on the 

order of -50 mV. It is becoming increasingly clear that these bioelectric 

parameters serve functional roles in signaling pathways that control cell 

proliferation, differentiation and migration. Thusly, understanding how 

these mechanisms function is of high priority to developmental biology, 

regenerative medicine and cancer research. In complement to other work 

on electromagnetic radiation and other biophysical properties of cells, this 

chapter focuses on the endogenous patterning roles and signaling mecha-

nisms of spatially-distributed and slowly-varying (resting) transmembrane 

potentials in living tissues.  

A brief history 

The study of bioelectricity began long ago. Original experiments date back 

to the 17th century to experiments done by the Dutch biologist and micros-

copist Jan Swammerdan who believed that muscle contraction was caused 

by the flow of ‘animal spirits’ (Cobb, 2002). Swammerdan placed frog muscle 

into glass vessels and observed that physically irritating nerves with scis-

sors or another instrument caused the muscles to contract. However, it 

wasn’t until the 18th century that evidence of ‘animal electricity’ was pro-

cured by the Italian physicist and physician, Luigi Galvani (McCaig et al, 
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2005). In his famous experiments in the late 1700’s, Galvani observed that 

extracted frog muscles would twitch when exposed to currents produced 

during lightning storms. Galvani believed that the activation of these mus-

cle movements was generated by electrical fluid carried to the muscles by 

nerves. This phenomenon was termed ‘Galvanism’, and is credited with be-

ing the underpinnings to the modern study of electrophysiology (Bresadola, 

1998). Galvani fought most of his life to persuade skeptical colleagues that 

‘animal electricity’ was a reality and it wasn’t until some 75 years later  that 

modern experimental electrophysiology was launched by Emil du Bois-

Reymond’s Researches on Animal Electricity (Abbott, 2008). 

 Further experimentation conducted in the 19th century implicated elec-

trical potentials in the process of wound healing. In 1831, Matteucci demon-

strated the existence of action potentials in nerve and muscle cells for the 

first time by measuring injury potentials at cut ends using a galvanometer 

(McCaig et al, 2005). Injury potentials are now known to be a steady state, 

long-lasting direct current (DC) voltage gradient induced within the extra-

cellular and intracellular spaces by current flowing into and around an in-

jured nerve. Emil du-Bois Reymond built upon the initial observations of 

Matteucci by measuring current flowing out of a cut on his finger. This flow 

of current is due to the short-circuiting of the transepithelial potential (TEP) 

difference that occurs at a skin lesion (the TEP drives charged ions through 

the wound because the gap in the epithelium forms a low-resistance path for 

current flow). Human skin, as well as that of guinea pigs and amphibians, 

maintains a TEP across epithelial layers. When the skin is cut, a large, 

steady electric field (EF) arises immediately and persists for hours at the 

wound edge, as current pours out the lesion from underneath the wounded 

epithelium. This injury current is known to be essential for the regeneration 

of new limbs, where currents between 10 and 100 µA/cm2 create a steady 

voltage drop of roughly 60 mV/mm within the first 125 µm of extracellular 

space (McCaig et al, 2005; McCaig et al, 2009). 

 Transcellular currents are also known to drive development and mor-

phology. Elmer Lund carried out extensive research on electrical potentials 

between in the 1920s and 30s, arguing that electrical patterns are intimate-

ly related to the morphogenetic processes and vector properties of cell and 

tissue functions (Harold, 1982; Lund, 1947). The modern reformulation of 

these ideas is largely due to the work of Lionel Jaffe and his colleagues 

(done some 30 years later), demonstrating that electrical properties of indi-

vidual cells, epithelial sheets, neural structures and limbs were necessary 

for growth and proper pattern and polarity establishment (Jaffe, 1981; Jaffe 

& Nuccitelli, 1977). 
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Bioelectricity in the molecular age 

Several key aspects demarcate modern studies of bioelectricity from its 

foundations. First is an increased appreciation of spatial distribution of rest-

ing potentials. While classical works focused on electric fields and ion fluxes 

(mostly due to epithelia) (Borgens, 1982; Borgens, 1983; Nuccitelli, 1987; 

Nuccitelli et al, 1986; Robinson & Messerli, 1996; Shi & Borgens, 1995a), we 

now know that the spatial organization of plasma membrane voltage levels 

across tissues and organs carries vital patterning information that drives 

anatomy (Levin, 2012a). Secondly, techniques are now available for the mo-

lecular characterization of the mechanisms that both produce and respond 

to these gradients (Zhao et al, 2006). Together with traditional techniques 

such as physiological measurements and applied fields, endogenous gradi-

ents can now be manipulated with tight spatio-temporal specificity at the 

molecular level, via the genetic modulation of well-characterized channels 

and pump proteins (Adams & Levin, 2012). Thus, in addition to functional 

data on the electric properties themselves, the source and downstream effec-

tors of changes in Vmem can now be dissected in great detail; for the first 

time, the patterning information encoded within dynamic bioelectrical net-

works are being integrated with well-known biochemical cascades and gene-

regulatory networks. The results of these efforts reveal that embryonic pat-

terning, regenerative repair and the suppression of cancerous disorganiza-

tion all require continuous signal exchange between cells, tissues and organ 

systems (Adams, 2008; Levin, 2009). 

2. The role of endogenous electric fields and voltage gradients 

in morphogenesis 

The sources of endogenous bioelectric signals are shown in Fig. 1. Modern 

experimental techniques to probe animal electricity have come a long way 

since Galvani first made dead frog muscle twitch by applying an electric 

current to a nerve. Using standard techniques of molecular genetics, we can 

now target the expression patterns of ion channels and transporters for ra-

tional modulation. The use of knockout, RNAi, or morpholinos (antisense 

oligonucleotides to target specific mRNA sequences) allows gene-specific 

loss-of-function experiments.  Pharmacological blockade, while not as specif-

ic as molecular approaches, offers the benefits of temporal control of inhibi-

tion, as well as the ability to target whole groups of ion channels or pumps 

at once – an important feature given that multiple ion translocators of the 

same family are often co-expressed and can compensate for each other, thus 

masking important phenotypes in gene-targeting experiments (Blackiston et 

al, 2009). 
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Figure 1. Sources of bioelectric signals at multiple levels of organization. Endogenous 

bioelectric signals comprise a set of biophysical properties that include voltage gradi-

ents, electric fields, and individual ion flows. In vivo, these originate at multiple levels 

of organization. (A) Organelle membranes generate voltage gradients, such as the 

nuclear envelope potential (largely unexplored) and the well-understood mitochondri-

al potentials. In recent years, the roles of resting potential across the plasma mem-

brane of the cell (B) has become known as an important determinant of cell fate; spa-

tial gradients of such voltage values over cell fields are now known as regulators of 

pattern formation in embryogenesis and regeneration.  Decades ago it was recognized 

that the trans-epithelial electric field resulting from the parallel activities of polarized 

cell layers (C) was an important factor for guidance of migratory cell types during 

development and wound healing. Finally, at the level of entire appendages or even 

whole organisms (D), large-scale potential differences presage and control anatomical 

polarity and organ identity. 

 

 In the past decade, much work has begun to identify the endogenous ion 

conductances that are responsible for important patterning events, and the 

mechanisms by which cells can translate these signals into known gene reg-

ulatory networks (Levin, 2009). Conversely, exogenous ion channels or 

pumps can be introduced into cells and thus allow predictable changes in 

transmembrane potential to reveal gain-of-function phenotypes. These tech-

niques have now been used in numerous model species to show that endoge-

nous bioelectric gradients are among the most important sources of morpho-
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genetic information in vivo (Adams & Levin, 2012a; Levin, 2012a; Levin & 

Stevenson, 2012; McCaig et al, 2009; Pai et al, 2012).  

Vmem as a regulator of cell behavior 

Morphogenesis broadly defined is the dynamic process by which the geome-

try and topology of complex biological structures is established. This occurs 

during embryogenesis, but is also important during remodeling and regen-

eration during adulthood. The establishment and maintenance of shape on 

many scales (cells, tissues, organs, and entire bodyplans) is regulated by a 

number of epigenetic factors controlling gene expression. Cells with differ-

ent membrane and cytoplasm properties, but with identical DNA comple-

ments must consistently form and maintain various embryonic and adult 

structures. It has long been known that voltage gradients can mediate some 

of the necessary long-range communication through endogenous electric 

fields (Jaffe, 1981; Jaffe & Nuccitelli, 1977; Nuccitelli, 1988). More recent 

work has shown that targeted perturbation of transmembrane voltage re-

sults in specific, coherent changes of large-scale patterning.  Remarkably, 

modulation of resting potential does not in itself impair embryonic viability, 

and it is often possible to dissociate subtle patterning functions of bioelectric 

states from basic housekeeping physiology of cells. Thus, Vmem levels in key 

groups of cells have been implicated in controlling the head-to-tail (Beane et 

al, 2011) and left-right (Aw et al, 2010) body axis polarity, the patterning of 

craniofacial structures (Vandenberg et al., 2011), the induction of eye devel-

opment (Pai et al, 2012), and the initiation of Xenopus tail regeneration 

(Adams et al, 2007; Tseng et al., 2011).  

 One example of how Vmem values regulate the behavior of key cell popu-

lations in vivo is demonstrated by the discovery of a set of cells in the frog 

embryo that can confer a neoplastic-like phenotype upon stem cell deriva-

tives, resulting in an embryo-wide ‘hyperpigmentation’ phenotype (Black-

iston et al., 2011). The expression of the glycine-gated chloride channel 

(GlyCl) demarcates a widely, yet sparsely distributed cell population that 

can be specifically targeted by exposing embryos to the potent GlyCl channel 

agonist, ivermectin (Ottesen & Campbell, 1994). Then, controlling the extra-

cellular concentrations of chloride in accordance to the Goldman equation, 

the membrane potential of GlyCl-expressing cells can be specifically modu-

lated to known levels (and monitored with voltage-reporting fluorescent 

dyes). When depolarized, these GlyCl-expressing cells instruct, over a 

significant distance (mediated by regulation of serotonin signaling), the 

neural crest cell-derived melanocytes to undergo a neoplastic-like con-

version acquiring three major properties commonly associated with me-

tastasis: they hyperproliferate, become highly invasive, and undergo a 

change in shape, as well as up-regulating genes associated with neo-

plasia – SLUG and Sox10 (Morokuma et al, 2008). Crucially, this metas-
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tasis-like phenotype can be reproduced by misexpressing mRNAs encod-

ing sodium, potassium, or proton transporters, and can be rescued by the 

simple manipulation of extracellular ion content or through misexpres-

sion of opposing (hyperpolarizing) channels that drive the bioelectric 

state of the instructing cells back to normal.  Together these data 

demonstrate that the control of instructor cell-derived signaling is driv-

en by voltage per se, not necessary any one specific channel protein or 

type of ion. 

How is Vmem change transduced into specific cellular responses?  

Several known mechanisms (Fig. 2) convert long-term changes in Vmem lev-

els into second-messenger cascades that ultimately drive transcriptional 

responses (Levin, 2007). Voltage-driven conformational changes of molecules 

such as integrins (Arcangeli & Becchetti, 2010; Arcangeli et al, 1993) and 

phosphatases (Lacroix et al, 2011; Okamura & Dixon, 2011), as well as volt-

age-regulated movement of signaling molecules through calcium channels 

(Varga et al, 2011), gap junctions (Brooks & Woodruff, 2004; Fukumoto et 

al, 2005), and neurotransmitter transporters (Levin et al, 2006), can all play 

a role in linking biophysical events to changes in gene transcription. These 

processes then feed into several known genetic mechanisms, often involving 

changes in expression or function of genes such as PTEN, Integrin, 

SLUG/Sox10, Notch, SIK, and NF-kB. This, in turn, leads to changes in cell 

cycle, position, orientation and differentiation. It is now known that the nu-

clear membrane also possesses its own complement of ion transporters 

(Bustamante, 1994; Bustamante et al, 1995; Bustamante et al, 1994; 

Mazzanti et al, 2001); although the function of the nuclear envelope poten-

tial has not been explored in developmental patterning, it is possible that 

the current picture of bioelectric signaling needs to be expanded beyond cell 

surface events. Thus, Vmem changes and ion flows can function as one link in 

the continuous interplay between genetic networks (which establish pat-

terns of ion channel and pump expression) and the biophysical events that 

redistribute signaling molecules and control cell behavior within the long-

range signaling pathways that occur during development and regeneration. 
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Figure 2. Mechanisms for converting membrane voltage change into transcriptional 

events. Multiple mechanisms exist within cells to transduce changes in Vmem (a bio-

physical event) into genetic responses.  Transcriptional cascades are initiated by sec-

ond messenger systems that are voltage-regulated, including the movement of small 

molecules such as serotonin (5HT) through gap junctions via electrophoresis (voltage 

gradient between two connected cells) or through voltage-powered transporters such 

as the serotonin transporter SERT.  Other molecules, such as integrin receptors and 

voltage-sensitive phosphatases can convert changes in Vmem into powerful integrin- 

and PTEN-dependent downstream signaling. Additional small molecules include Cal-

cium, mediated by voltage-gated calcium channels, and butyrate/sodium transporters 

(such as SLC5A8) that allow voltage to control the import of key epigenetic regulators 

such as butyrate. Legend: star indicates membrane protein. Cloud indicates a process 

(chain of signaling steps). Lightning bolt indicates local change in transmembrane 

potential. Cylinder indicates a gap junction pore to neighboring cell. Colored circles 

represent small signaling molecules. 
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Techniques for identifying voltage transduction mechanism 

How can the particular transduction mechanism mediating any bioelectric 

effect be identified in a specific assay? One example is provided by the identi-

fication of the ‘instructor cells’ that, when depolarized, cause a hyperpigmen-

tation phenotype in Xenopus laevis. In this case, as well as other similar ex-

amples in vivo, the mechanism by which long-term depolarization is trans-

duced into transcriptional and cell behavior changes was identified through a 

suppression drug screen. In such a loss-of-function approach, each possible 

signal transduction candidate is probed by inhibiting it to determine whether 

this suppresses a given effect of Vmem change (Adams & Levin, 2006; Adams & 

Levin, 2012). In the case of melanocytes, inhibitors of Ca2+ influx, of serotonin 

transporter (SERT) function, or of gap junctional connectivity were used to-

gether with the depolarizing ivermectin treatments. Only exposure to the spe-

cific inhibitor of the serotonin transporter (fluoxetine) blocked ivermectin-

induced hyperpigmentation in all of the treated embryos, suggesting that 

SERT is required for the transduction of this bioelectrical signal (Blackiston et 

al, 2011). Consistently with this model, embryos treated directly with extra-

cellular serotonin also resulted in consistent hyperpigmentation. Similar 

screens have resulted in the identification of the various transduction mecha-

nisms in various morphological events (summarized in Table 1). 

 
Developmental 

role 

Key biophysical 

event 

Transduction 

mechanism 

Reference 

Tail regeneration in 

Xenopus: 1° step 

Voltage change  

(repolarization) 

Guidance of  

neural growth 

(Adams et al, 2007) 

Tail regeneration in 

Xenopus: 2° step 

Intracellular sodium  

content 

SIK2 (salt- 

inducible kinase) 

(Tseng et al, 2010) 

Proliferation of  

progenitor cells 

Voltage change Ca++ flux through 

voltage-gated  

calcium channels 

(Ring et al, 2012) 

Neoplastic conver-

sion of melanocytes 

in Xenopus tadpoles 

Voltage change  

(depolarization) 

Serotonin  

movement through 

SERT 

(Blackiston et al,  

2011; Morokuma et  

al, 2008) 

Polarity  

determination in 

planarian  

regeneration 

Voltage change Ca++ flux through 

voltage-gated  

calcium channels 

(Beane et al, 2011) 

Left-right patterning  

in Xenopus embryos 

Voltage change Serotonin  

movement through  

gap junctions 

(Adams et al, 2006;  

Fukumoto et al, 

2005a,b; Levin et  

al, 2002) 

Trachea size control  

in Drosophila 

Ion-independent 

function 

Planar polarity,  

septate junction 

structure 

(Paul et al, 2007) 

 

Table 1. Known transduction mechanisms by which ion flows impact morphogenesis. 
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Bioelectric signals for coordination of non-local morphogenesis 

Large-scale pattern formation requires the orchestration of numerous cell-

level processes. Bioelectric gradients are an ideal mechanism for implement-

ing such coordination because they function across a range of size scales 

(Adams & Levin, 2013; Blackiston et al, 2009; Sundelacruz et al, 2009) and 

control basic cell behaviors such as cell cycle progression (Binggeli & 

Weinstein, 1986; Sundelacruz et al, 2009) and differentiation (Konig et al, 

2006; Konig et al, 2004), in a wide range of cell types, including human mes-

enchymal stem cells (Sundelacruz et al, 2008), embryonic stem cells (Ng et 

al, 2010), and mature somatic cells (Cone & Cone, 1976; Cone, 1970). Many 

studies have also examined the effects of Vmem on cell migration and orienta-

tion, and significant progress has been made on dissecting the molecular 

mechanisms driving these processes in the context of wound healing 

(McCaig et al, 2005; McCaig et al, 2009; Schwab, 2001; Zhao et al, 2006) and 

whole-body embryogenesis (Pan & Borgens, 2010; Shi & Borgens, 1995). 

 Given the abilities of voltage gradients to exert influence both cell-

autonomously and over long distances, what kind of patterning information 

can bioelectric signals mediate? Transmembrane potential can specify issue 

identity at the level of cell groups (Levin, 2012) as evidenced by recent find-

ings showing that the artificial manipulation of Vmem (hyperpolarization to a 

specific level) in developing Xenopus embryos can turn cell groups far from 

the anterior neuroectoderm to an eye fate (Pai et al, 2012). Vmem changes 

can also control large-scale axial polarity, such as the head-tail polarity of 

regenerating planarian fragments (Beane et al, 2011; Marsh & Beams, 

1947; Marsh & Beams, 1952), and the left-right patterning of the early frog 

embryo (Levin, 2006; Levin et al, 2006). In the latter series of studies, a 

pharmacological screen first implicated several ion transporters in estab-

lishment of correct laterality (Levin et al, 2002); serotonergic mechanisms 

mediating the effect were later found using a suppression screen (Fukumoto 

et al, 2005; Fukumoto et al, 2005). Transmembrane voltage patterns across 

tissues can also provide positional information to guide migratory cells in 

vertebrate neurulation (Shi & Borgens, 1995) or specify the spatial patterns 

of gene expression during craniofacial morphogenesis (Vandenberg et al, 

2011) – a kind of subtle prepattern that underlies the biochemical and ge-

netic prepatterns that drive anatomy. In addition to providing large-scale 

anatomical identity and controlling the geometry of gene expression, bioe-

lectric gradients can act as master regulators, triggering highly-

orchestrated, self-limiting downstream patterning cascades such as regen-

eration of an entire appendage. For example, regeneration of the tadpole tail 

can be induced by very simple signals consisting of modulations of proton or 

sodium ion movement in the blastema during non-regenerative stages 

(Adams et al, 2007; Tseng et al, 2010). 
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 Given this epigenetic control of cellular processes, it should come as no 

surprise that bioelectric properties are essential to many developmental 

processes that require the proliferation, differentiation, migration and ori-

entation of a vast number of cells. These same signals that are necessary in 

the regeneration and remodeling of complex tissues also participate in the 

continuous battle of multicellular organisms to avoid the runaway growth of 

cancer. 

3.  Endogenous electric fields & ionic flow in the 

detection & treatment of cancer 

The same signaling mechanisms required for stem cell specification and 

lineage restriction during embryonic pattern formation also play fundamen-

tal roles in adult tissue regeneration and cancer. Indeed, cancer can be de-

scribed as a lack of morphostasis, or a disruption in the ability to maintain 

target morphology (Oviedo & Beane, 2009; Rubin, 1985; Tsonis, 1987). 

The molecular physiology of cancer 

Many of the same signaling pathways (i.e. TGFß, Wnt, Notch, etc.) regulate 

self-renewal in both stem cell and cancerous cell types (Al-Hajj & Clarke, 

2004; Bjerkvig et al, 2005; Reya et al, 2001; Wicha, 2006). While the unique 

bioelectrical properties of tumor tissue have long been recognized (Burr, 

1941; Cameron & Smith, 1989; Koch & Leffert, 1979; Rozengurt & Mendoza, 

1980), it is only in recent years that ion channels and bioelectric communi-

cation have emerged as important players in cancer-related processes. Many 

ion channels have been found to be involved in cancer-related cellular be-

haviors such as proliferation, apoptosis, migration and angiogenesis 

(Blackiston et al, 2011; Fiske et al, 2006; Kunzelmann, 2005; Morokuma et 

al, 2008; Pardo et al, 2005; Prevarskaya et al, 2007; Roger et al, 2006). In 

fact, ion channels are involved in each of the six traditional hallmarks of 

cancer: 1) self-sufficiency in growth signals, 2) insensitivity to antigrowth 

signals, 3) evasion of programmed cell death (apoptosis), 4) limitless replica-

tive potential, 5) sustained angiogenesis, and 6) tissue invasion & metasta-

sis (Hanahan & Weinberg, 2000; Prevarskaya et al, 2010).  

 The bioelectric profiles of different cell types demonstrate the link be-

tween membrane voltage and proliferative potential. The resting Vmem’s of 

various cell types vary widely (generally -10 mV to -90 mV) with plastic, 

embryonic, stem and tumor cells being relatively depolarized, whereas qui-

escent, terminally differentiated cells are relatively hyperpolarized (Binggeli 

& Weinstein, 1986; Sundelacruz et al, 2009). Membrane potentials are in-

volved in the control of mitosis rate, as the modulation of Vmem has been 

shown to be required for both the G1/S and G2/M phase transitions 
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(Blackiston et al, 2009; Freedman et al, 1992). Mitotic arrest can be 

achieved by hyperpolarizing Chinese hamster ovary cells to -75 mV, and 

reversed by depolarizing to -10 mV (Cone & Tongier, 1973). Depolarization 

is also responsible for the hyper-proliferation of melanocytes in Xenopus 

embryos (Blackiston et al, 2011; Morokuma et al, 2008). Vmem thus provides 

a convenient target for the modulation of proliferative potential.  

 A number of ion channels have also been implicated in enhanced cell 

migration, motility and invasion; all crucial components of tumor metasta-

ses. For example, voltage-gated sodium channels have been detected in bi-

opsies of metastatic breast, prostate and cervical cancers as well as in meta-

static cancer-derived cell lines (Diaz et al, 2007; Diss et al, 2005; Fraser et al, 

2005; Roger et al, 2007). Potassium and chloride channels have also been 

implicated in the dynamic changes in cell shape and volume required for the 

capacity to move and invade extracellular spaces in glioma cells (McFerrin 

& Sontheimer, 2006; Prevarskaya et al, 2010). A number of these studies 

indicate that highly metastatic cancers express embryonic isoforms of volt-

age gated sodium channels, further supporting the notion that cancer is a 

recapitulation of a developmental state. More recently, two studies revealed 

that depolarized membrane voltage is both a physiological signature by 

which nascent tumors can be non-invasively detected using fluorescent re-

porter dyes, and a functional parameter that can be used to control tumor-

igenesis: artificial hyperpolarization of oncogene-expressing cells by a range 

of ion channel types significantly reduces the formation of tumors in an am-

phibian model (Chernet & Levin, 2013; Lobikin et al, 2012). 

Cancer: rogue genetics or loss of tissue organization? 

In fact, developmental systems are a convenient model for the studies of 

cancer biology, providing access to a number of stem cell populations that 

are present throughout embryogenesis, many of which have been implicated 

with neoplasms. Perturbations in embryonic systems that can induce neo-

plastic-like phenotypes thus allow significant insights into the signaling 

mechanisms that may give rise to the creation of cancerous stem cells. Stem 

cells can be regarded as the center of the regeneration-development-cancer 

triad (White & Zon, 2008) and the backbone of the cancer stem cell hypothe-

sis (Dean et al, 2005). Melanomas, for example, are tumors of pigmented 

cells known as melanocytes. Recent studies have highlighted that melanoma 

cells seem to revert to a more stem cell-like phenotype as they become more 

aggressive, showing decreased expression of the micropthalmia-associated 

transcription factor (MITF) and tyrosinase-related protein 1 (TRP1) (Bittner 

et al, 2000; Hendrix et al, 2003). This de-differentiation might make highly 

aggressive tumors more difficult to identify in routine histopathology ampli-

fying the need for different classification standards. 
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Figure 3.  A mind-map of the field of bioelectricity. 
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 There is currently significant debate as to whether stem cell disregula-

tion and genetic mutation (Vaux, 2011a; Vaux, 2011b), or epigenetic signals 

from the microenvironment (Hendrix et al, 2007; Sonnenschein & Soto, 

2011; Soto & Sonnenschein, 2004; Soto & Sonnenschein, 2011) are the better 

perspective from which to understand cancer. Importantly however, bioelec-

tric mechanisms have now been shown as central players in both types of 

events (Levin, 2012b). Regardless of which view turns out to be the more 

accurate, continued advances in the understanding of regulation of stem 

and somatic cells by voltage gradients, and the interplay between biophysi-

cal and genetic regulators, are likely to have significant implications for the 

cancer problem.  

4. Conclusion 

Endogenous membrane voltage are one key component of the rich set of 

electromagnetic events taking place in living tissues; their spatio-temporal 

distribution represents important, yet still under appreciated, sources of 

instructive information in the control of morphogenesis. Recent work, mak-

ing use of modern experimental techniques, has allowed scientists to probe 

the connections between these biophysical signals and the molecular-genetic 

downstream pathways that control cell behavior and thus large-scale pat-

terning. However, we are only beginning to scratch the surface, and much 

development of technology and conceptual apparatus must take place before 

a full understanding of self-generated order and information storage in 

physiological networks can be gained. This includes development of theoret-

ical formalisms for modeling information storage in real-time physiological 

(not genetic) networks, comprehensive (quantitative) physiomic profiling of 

morphogenetic model systems in vivo, and the application of tools such as 

optogenetics to allow the experimental re-writing of bioelectric patterns in 

living tissues. Bioelectricity (Fig. 3) still represents a novel area of research 

in the life sciences, and improvement in the ability to control bioelectrical 

information is sure to be transformative for regenerative medicine, bioengi-

neering, and synthetic biology.  
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