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Across species, neurons track time over the course of seconds to minutes, which may feed the sense of time passing. Here,
we asked whether neural signatures of time-tracking could be found in humans. Participants stayed quietly awake for a few
minutes while being recorded with magnetoencephalography (MEG). They were unaware they would be asked how long the
recording lasted (retrospective time) or instructed beforehand to estimate how long it will last (prospective timing). At rest,
rhythmic brain activity is nonstationary and displays bursts of activity in the alpha range (a: 7–14Hz). When participants
were not instructed to attend to time, the relative duration of a bursts linearly predicted individuals’ retrospective estimates of
how long their quiet wakefulness lasted. The relative duration of a bursts was a better predictor than a power or burst amplitude.
No other rhythmic or arrhythmic activity predicted retrospective duration. However, when participants timed prospectively, the rel-
ative duration of a bursts failed to predict their duration estimates. Consistent with this, the amount of a bursts was discriminant
between prospective and retrospective timing. Last, with a control experiment, we demonstrate that the relation between a bursts
and retrospective time is preserved even when participants are engaged in a visual counting task. Thus, at the time scale of
minutes, we report that the relative time of spontaneous a burstiness predicts conscious retrospective time. We conclude that in
the absence of overt attention to time, a bursts embody discrete states of awareness constitutive of episodic timing.
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Significance Statement

The feeling that time passes is a core component of consciousness and episodic memory. A century ago, brain rhythms called
“a” were hypothesized to embody an internal clock. However, rhythmic brain activity is nonstationary and displays on-and-
off oscillatory bursts, which would serve irregular ticks to the hypothetical clock. Here, we discovered that in a given lapse of
time, the relative bursting time of a rhythms is a good indicator of how much time an individual will report to have elapsed.
Remarkably, this relation only holds true when the individual does not attend to time and vanishes when attending to it. Our
observations suggest that at the scale of minutes, a brain activity tracks episodic time.

Introduction
Brain rhythms in the a range (a: 7–14Hz) are canonical markers
of the level of consciousness in humans (Berger, 1935; Fell et al.,
2010; Klimesch, 2012). They represent neural synchronization in
spontaneous fluctuations with a period of ;100ms generated
from a variety of neural sources (Steriade et al., 1990; Steriade,
1999; Raichle, 2015; Halgren et al., 2019; Higgins et al., 2021).
Because of their omnipresence at rest, a rhythms were postulated
to be the internal clock supporting one’s awareness of the passage
of time (Treisman, 1963, 1984; Kononowicz and vanWassenhove,
2016; van Wassenhove et al., 2019). To date however, whether
spontaneous oscillations can predict an individual’s experience of
the passage of time at the scale of minutes remains unverified
(Kononowicz and van Wassenhove, 2016; van Wassenhove et al.,
2019). Here, we re-assess the original a clock hypothesis and ask
whether bursts of spontaneous a activity keep track of time. This
question was motivated by known nonstationarities in brain
rhythms challenging the role of neural oscillations in cognition
(Steriade et al., 1990; Cole and Voytek, 2017; van Ede et al., 2018),

Received Apr. 27, 2023; revised July 14, 2023; accepted Aug. 6, 2023.
Author contributions: I.P. and V.v.W. designed research; L.A. and I.P. performed research; L.A. and I.P.

contributed unpublished reagents/analytic tools; L.A. and V.v.W. analyzed data; V.v.W. wrote the first draft of
the paper; L.A., and V.v.W. wrote the Materials & Methods and the Results sections; L.A., I.P., and V.v.W.
edited the paper; V.v.W. wrote the paper.
This work was supported by the European Commission Grant ERC-YStG-263584 and the EXPERIENCE Project

of the European Commission H2020 Framework Program Grant No. 101017727 (to V.v.W.). We thank the
members of UNIACT at NeuroSpin for their help in recruiting volunteers and of the Cognition & Brain
Dynamics research team for their feedback on the work. In particular, we thank Dragana Manasova, Izem
Mangione, and Dr. Laetitia Grabot for their help with some of the data collection. We also thank Dr. Sophie
Herbst, Dr. Tadeusz Kononowicz, Dr. Baptiste Gauthier, and Raphaël Bordas for their helpful feedback on the
written work. Last, but not least, we are grateful for the dazzling encouragements of an anonymous
examiner regarding the pilot data of this study in I.P. master’s thesis: “The most remarkable thing about the
work reported in this thesis is that anyone could have thought that it could ever have yielded positive results!
[...] Even though I’d estimate that the chances of getting positive results in this experiment were like playing
18 holes of golf blindfold and shooting under par, there was in a way nothing wrong with the methodology.”
The authors declare no competing financial interests.
Correspondence should be addressed to Virginie van Wassenhove at virginie.van.wassenhove@gmail.com.
https://doi.org/10.1523/JNEUROSCI.0816-23.2023

Copyright © 2023 Azizi et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0

International license, which permits unrestricted use, distribution and reproduction in any medium provided
that the original work is properly attributed.

7186 • The Journal of Neuroscience, October 25, 2023 • 43(43):7186–7197

https://orcid.org/0000-0003-1829-3713
https://orcid.org/0000-0002-2569-5502
mailto:virginie.van.wassenhove@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


recent description of time cells with long and diverse periods
(Pastalkova et al., 2008; MacDonald et al., 2011; Kraus et al., 2015;
Issa et al., 2020; Umbach et al., 2020; Aghajan et al., 2022; Cogno
et al., 2022; Tsao et al., 2022), and the identification of paradig-
matic shortcomings in earlier work.

The clock hypothesis posits that in the absence of external
sensory inputs, endogenous oscillatory activity (the pacemaker
of the hypothesized internal clock) predicts an individual’s esti-
mation of elapsing time (Hoagland, 1935; Treisman, 1963). The
clock hypothesis was built on the intuition that biological tick
signals are steady and reliable enough to keep count of time
units, like mechanical clocks periodically mark the passing of
seconds. In its neurobiological implementation, the tick of the
internal clock would be isomorphic to the period of spontaneous
a neural oscillations. Hence, the a clock hypothesis made the
assumption that neural oscillations are stationary, continuous
and steadily persistent over time, i.e., can instantiate pacemaker-
like rhythmic activity (e.g., Miall, 1989; Gibbon and Church,
1990; Buhusi and Meck, 2005; Gu et al., 2015; Kononowicz and
van Wassenhove, 2016). Under this assumption, measuring an
individual’s a peak frequency (iAPF) would be equivalent to
assessing the rate of change in time units, a metrical basis for
the estimation of time. In a series of experiments, Michel
Treisman, the instigator of the a clock hypothesis, dismissed
this idea (Treisman, 1984): he observed that a oscillations did
not behave like regular pacemakers. As is now acknowledged,
spontaneous brain rhythms display nonstationarities with “up
and down states” of bursting activity over time (Steriade et al.,
1990; Jones, 2016; Sherman et al., 2016; Cole and Voytek,
2017; Shin et al., 2017).

Here, we wished to characterize spontaneous a brain activity
while participants, quietly awake, were unaware they would have
to report how much time had just elapsed. In human research,
this can be done using a retrospective timing task, in which par-
ticipants do not know in advance that time is the experimental
factor of interest. Retrospective timing tasks engage episodic
memory processes (Michon, 1975; Hicks et al., 1976; Block,
1985), and are under-studied for two reasons. First, retrospective
timing is most relevant and ecologically valid over longer time
scales (seconds to minutes and hours) but this time scale pre-
vents collecting many trials within a single experiment (Grondin,
2010; Chaumon et al., 2022; Balcı et al., 2023). Second, and most
importantly, a conservative retrospective task tests a single trial
per participant to prevent attentional re-orientation to time,
which would defeat the purpose of the task. With both these con-
ditions fulfilled, retrospective timing emulates life events, mostly
single shot experiences in our episodic landscape, and engage
memory mechanisms (Michon, 1975; Hicks et al., 1976; Block,
1985). Here, we contend that this stringent approach allows
addressing the basic building block for the automatic coding of
the passage of time, at the minute-scale, in a manner very close
to real life situations and comparable to interspecies approaches.

Our study is unique for several theoretical and empirical rea-
sons. Neuroimaging studies mostly focus on prospective time,
when participants covertly or overtly pay attention to time. Here,
our interest is how the brain codes elapsing time when partici-
pants do not a priori adopt a cognitive strategy to estimate it.
Timing tasks mostly focus on how the temporal statistics of
external sensory events are attended to, predicted, analyzed, or
categorized; here, we ask how elapsing time in the absence of
sensory stimulation is encoded. Thus, we assess how endogenous
processes during resting-state (Raichle, 2015) contribute to the
retrospective sense of time constitutive of the episodic “when”

(Friedman, 1993; Sugar and Moser, 2019; Buhusi, 2020). Last,
timing tasks typically address short time-scales that are below a
few seconds with a repeated number of trials time-locked to
stimulations (Busch and VanRullen, 2010; Hanslmayr et al.,
2011; Chakravarthi and VanRullen, 2012; Jensen et al., 2012;
Landau and Fries, 2012; Grabot et al., 2017, 2021; Nobre and
Van Ede, 2018; Mioni et al., 2020). Under these experimental
conditions, the assumption that a oscillations are stationary is a
fair approximation of the signals. At the longer episodic time
scales investigated here, the assumption of stationarity is clearly
violated, which motivates the novel characterization of spontane-
ous a activity we explored in this study.

Materials and Methods
Participants
All participants provided a written informed consent in accordance with
the Ethics Committee on Human Research at NeuroSpin (Gif-sur-
Yvette, France) and in conformity with the Declaration of Helsinki
(2018). A total of 63 right-handed participants (27 males; age¼ 27 years
old, 66 years) were recruited for the first study. All had normal or cor-
rected-to-normal vision and were naive as to the purpose of the study.
None declared neurologic or psychiatric disorders, and none were under
medical treatment. Seven participants were excluded a priori from the
magnetoencephalographic (MEG) analysis: one participant showed an
extreme time estimation (above the interquartile range), four participants
showed nonrecoverable noisy MEG data and two participants did not
comply with the task. Hence, a total of 56 participants (22 males;
age¼ 27 years old,66 years) were analyzed in the retrospective time task.

Out of the 56 participants tested in the retrospective time task, a sub-
group of 25 participants performed a prospective duration estimation
task: one participant was excluded from the analysis because of an
extreme estimation (above the interquartile range) yielding a final sam-
ple for the prospective group of 24 participants (11 males; age¼ 26 years
old,65 years).

A new group of 26 right-handed participants (12 males; age¼ 24 years
old, 65 years) were recruited for the visual counting experiment. Three
participants were excluded a priori from the MEG analysis: one partici-
pant showed an extreme time estimation (above the interquartile range),
two participants showed nonrecoverable noisy MEG data. Hence, a total
of 23 participants (11 males; age¼ 25 years old, 65 years) were analyzed
in the retrospective dual-task.

Experimental design
In the quiet wakefulness retrospective time experiment (Fig. 1a), the ex-
perimenter provided participants with the following instructions before
the MEG recording: “I will record your brain activity at rest. Please,
refrain from moving at all times and keep your eyes open. To help
attenuate eye movements, we suggest you fixate on the black screen in
front of you.” Following these instructions, the experimenter left the
MEG room and waited for participants to state they were ready to start.
Unbeknownst to participants, the recordings lasted 2, 4, or 5min. From
the participant’s viewpoint, the recording unfolded as follows: the
French word début (“start”) appeared on the screen for 1 s followed by a
black screen lasting 4 s. A red dot centered on the screen appeared for
500ms after which the screen remained black for 2, 4, or 5min. A second
red dot appeared on the screen for 500ms at the end of the experiment.
At the end of the MEG recording, the participant was immediately asked
to provide a verbal estimate of how much time had elapsed between the
two red dots (retrospective time estimate; rTE). In the retrospective time
task, this instruction was fully unexpected by participants, as confirmed by
informal debriefing following the recording.

In the quiet wakefulness prospective time task, participants were
informed before the MEG recording that they would be asked to provide
an estimation of how much time had passed between the two red dots
(prospective time estimate; pTE). These recordings lasted 2 or 4min.

In the retrospective time task following a visual counting task, 17
small white visual annulus were presented in the center of the screen for
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Figure 1. Retrospective time estimates. a, In the retrospective timing task, participants (N¼ 56) stayed in quiet wakefulness during an MEG recording that could last 2, 4, or 5min. Participants received
no additional instructions. At the end of the MEG recording, they were asked to estimate as best they could the duration that elapsed between the two red dots, marking the beginning and end of the record-
ing. b, Distribution of the relative retrospective time estimates (rTE) across participants (N¼ 56). The dashed purple line delineates equality between subjective (rTE) and objective (clock) duration. The dashed
gray line indicates the mean rTE across participants, indicating that participants significantly underestimated the elapsed time of their quiet wakefulness. The lightest gray bar is an outlier. c, rTE as a function
of a power: stronger a power corresponded to longer rTE. Each dot is a participant. Black line is a regression line and gray shading is 95% CI. Data are reported for magnetometers. Extended Data Figure 1-1
reports the same outcome for gradiometers. Extended Data Figure 1-2a illustrates the mean source estimates ofa power as likely contributor of the source analysis reported here. d–i, Data from two represen-
tative participants P1 and P2. d, P1 (rTE¼ 0.27) showed a flatter distribution of power spectral densities across sensors (blue). The individual’s a peak frequency (iAPF) (dashed purple line) was determined
using a spectral model fit fooof (Donoghue et al., 2020). Extended Data Figure 1-3a provides iAPF as a function of rTE. e, Model fit for one sensor (blue) showing the estimated 1/f slope (dashed gray), the
full spectral model (red), and the iAPF (purple dashed line). f, An oscillatory dynamic analysis (cycle-by-cycle; Cole and Voytek, 2019) was applied to the same sensors to detect and quantify the a burstiness
over time (green). g–i, The same characterization of spontaneous oscillatory dynamics for a second participant P2 (rTE¼ 1.25). P2 shows stronger a power and a burstiness than P1. ***p, 0.001.
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120ms each. The interstimulus interval varied pseudo-randomly
between 7 and 45 s. For instance, one sequence of interstimulus-interval
would be: 16, 5, 13, 22, 8, 5, 39, 1, 6, 7, 15, 7, 45, 6, 22, and 7 s. This task
lasted 4min. Participants were instructed to detect and count the ran-
dom occurrences of the annulus and to report their final count at the
end of the recording. The task started and ended with the same red dots,
which were used as instructions to the participants in defining the retro-
spective duration (rTE) they were also asked to estimate at the end of the
task.

Before the MEG recordings, participants’ impulsiveness (psychologi-
cal trait measure) was assessed using the French validated BIS-11
(Stanford et al., 2009). A total of 37 (out of 56 participants) in the main
retrospective timing task and 25 (out of 26 participants) in the visual
counting task completed the questionnaire.

Behavioral analysis
Participants’ retrospective (rTE) and prospective (pTE) time estimations
were computed relative to the actual clock time that had elapsed between
the two red dots as the ratio between the individual’s verbal report and
clock time. This provided a relative (hence, unitless) measure of duration
estimation allowing the comparison of the 2-, 4-, and 5-min conditions.
To test whether participants significantly overestimated or underesti-
mated the elapsed time, we performed one-sample, one-tailed t tests of
the relative time estimates (rTE and pTE). A one-tailed paired-samples t
test was used to compare the rTE and the pTE of the individuals
(N¼ 24) who performed the retrospective and prospective timing task.
The coefficients of variations (CVs) were typically computed as the
standard deviation of the population divided by the means of the popu-
lation. The performance in visual counting task was computed as the ra-
tio between the count reported by participants and the 17 stimuli
effectively shown on the screen.

MEG acquisition
We used a whole head Elekta Neuromag Vector View 306 MEG system
(Neuromag Elekta LTD) equipped with 102 triple sensor elements (one
magnetometer and two orthogonal planar gradiometers) to record elec-
tromagnetic brain activity in a magnetically-shielded-room. The sam-
pling frequency was 1 kHz. A high-pass filter of 0.3Hz was applied
online. Horizontal and vertical electrooculograms (EOG) and electrocar-
diogram (ECG) were recorded during the session. Participants’ head
position was measured before each block by means of four head position
coils (HPI) placed over the frontal and mastoid areas.

MEG preprocessing
Signal space separation (Taulu and Simola, 2006) was applied to decrease
the impact of external noise. MEG data were notch-filtered at 50Hz to
remove the power line noise. Ocular and cardiac artefacts were corrected
by rejecting independent component analysis (ICA) components com-
puted for MEG data that most correlated with detected ECG and EOG
events. All MEG recordings lasted 2, 4, or 5min. For the great majority
of the analyses, and unless otherwise specified, we used the first 2 min of
each dataset so as to conduct the analysis on the full set of participants.
In the visual counting task, only the MEG signals outside the evoked
responses elicited by the presentation of the annuli was considered for
the burst analysis. To do so, 800ms of signals were removed following
each stimulus presentation. The output signals consisted of 18 epochs of
unequal length. A total duration of 226 s was used for the MEG analysis
in this task.

MEG analysis
Power spectrum density
The continuous resting state recordings were segmented into nonover-
lapping 5-s epochs to compute the power spectrum density (PSD). The
PSDs were computed using multitaper between 0.1 and 45Hz.

Spontaneous a localizer. A cluster-based analysis was performed to
localize the significant sensors in the a range (7–14Hz) separately for
the magnetometers and the gradiometers using the quiet wakefulness
data. All subsequent analyses for all tasks were performed using these
same sensors.

In the main text, we report results for the magnetometers for simplic-
ity and refer to them as “sensors.” All outcomes of our analyses are per-
formed in sensor space, reported for magnetometers and could be
otherwise replicated for gradiometers. Replications in gradiometers are
reported in Extended Data Figures 1-1 and 1-3b.

On a per individual basis, the 1/f trend of the PSDs was compensated
for in each epoch and sensor. For this, we computed the mean PSD per
sensor and normalized them by the grand mean PSD taken over all
sensors. To localize sensors most sensitive to a, we ran a cluster-based
permutation analysis (Maris and Oostenveld, 2007) implemented in
MNE-Python (Gramfort et al., 2013) by drawing 1000 samples for the
Monte Carlo approximation and using FieldTrip’s default neighbor tem-
plates for the vectorview MEG system (Oostenveld et al., 2011). The ran-
domization method identified the MEG sensors whose statistics exceeded
a critical value, with neighboring sensors exceeding the critical value defin-
ing the significant cluster. The p-value was estimated based on the pro-
portion of the randomizations exceeding the observed maximum
cluster-level test statistic. The cluster-forming threshold was set to 0.0001,
which was equivalent to a t-threshold of 4.2 in an experimental design
using 56 participants. Only clusters with corrected p-values of,0.05
are reported. Robust clusters of 39 magnetometers and 71 gradiometers
were found.

Spectral analysis and individual a peak (iAPF) detection. The FOOOF
algorithm3 (version 1.0.0) was used to parameterize neural power spec-
tra (Donoghue et al., 2020). Settings for the algorithm were as follows:
the peak width limits were set to [1.0, 8.0], the maximal number of peaks
was set to 6, the minimum peak height was set to 0.1, the peak threshold
was set to 2.0 and the aperiodic mode was fixed. The PSDs of significant
sensors were used as FOOOF algorithm input. The algorithm outputs an
estimate of the individual a peak frequency (iAPF) and power. The
iAPF was defined as the local maximum within the frequency range of
7–14Hz, and averaged across significant sensors on a per individual
manner (Figs. 1d,e,g,h, 3g, 4b). Hence, a power was the average periodic
power at iAPF across significant sensors. The median absolute error for
iAPF estimation was between 0.1Hz for low noise and 1.25Hz for high
noise.

Oscillatory bursts analyses. The cycle-by-cycle time-domain analysis
was used to detect a oscillatory bursts in the continuous MEG record-
ings and to quantify each oscillatory cycle amplitude (Cole and Voytek,
2019). We ran this analysis for all three tasks on a per individual basis
(Figs. 1f,i, 3h, 4c). The threshold parameters used to detect episodes with
bursts were as follows: amplitude fraction threshold¼ 0.2; amplitude
consistency threshold¼ 0.4; period consistency threshold¼ 0.4; monot-
onicity threshold¼ 0.8; and minimum number of cycles¼ 3. The
Neurodsp tool was subsequently used to quantify the relative burst time
(Cole et al., 2019), a feature which indicates how bursty a signal is: 100%
means the continuous data were detected as a burst during the entire
time (sustained oscillatory signal) whereas 0% means that no a oscilla-
tions were found. Relative burst time and burst amplitude were com-
puted for each selected sensors, and then averaged across sensors on a
per individual basis. The same procedure was run on all other canonical
frequency bands (Fig. 2d–f). Thresholds for the d , u , and b bands were
set to: amplitude fraction threshold¼ 0.3; amplitude consistency
threshold¼ 0.6; period consistency threshold¼ 0.5; and monotonicity
threshold¼ 0.9.

Source estimation of a generators. For illustration purposes, we esti-
mated the likely cortical generators of a power in the retrospective and
prospective time tasks. The individuals’ anatomic MRIs (aMRIs) were
imported and segmented using the FreeSurfer image analysis suites
(http://surfer.nmr.mgh.harvard.edu/). A one-layer boundary element
model (BEM) surface was generated to constrain the forward model.
Individual forward solutions (head models: 10,242 icosahedrons/hemi-
sphere; 3.1-mm spacing) were computed using the individual BEM
model constrained by the anatomic MRI (aMRI). The aMRI and the
MEG were co-registered using the anatomic fiducials (nasion; preauricular
points; head surface) digitized before the MEG acquisition with the MNE-
Python suite (Gramfort et al., 2013). To ensure a reliable co-registration,
an iterative refinement procedure was used to realign all digitized points
with the individual’s scalp and was manually checked. We used the noise
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covariance matrix from 1 min of empty room recording before the
experimental session and used a linear constrained minimum var-
iance (LCMV) beamforming (Van Veen et al., 1997) approach on
the whole brain volume, which estimated the activity of each source
at the ith voxel for a given time window. The source estimates were

then morphed into a common Freesurfer average brain (fsaverage)
for subsequent group analysis.

The activity time courses for each voxel was segmented into nono-
verlapping 10-s epochs to compute the power spectrum density (PSD).
The PSDs were computed using multitaper between 0.1 and 20Hz, then

Figure 2. a Power and relative a burst time predict retrospective timing. a, relative retrospective time estimates (rTE) as a function of the relative a burst time (%), that is, the relative
amount of time a was bursting during the quiet wakefulness period participants estimated the duration of. Participants’ rTE significantly increased with higher relative burst time. Each dot is
a participant. P1 (rTE¼ 0.27) and P2 (rTE¼ 1.25) are two participants whose spectral dynamics are provided in Figure 1. Black line is a regression line and gray shading is 95% CI. Data are
reported for magnetometers. Identical outcomes for gradiometers are provided in Extended Data Figure 1-1. b, Distribution of a burst amplitude (top panel, orange) and relative a burst time
(bottom panel, green) as a function of a power (blue). c, Left panel, Relative d (d : 1–3 Hz) burst time did not correlate with rTE. Right panel: dynamic oscillatory d analysis applied to the
data of P1 and P2. d, e, The same analysis was applied for the u (4–7 Hz) and b (15–30 Hz) bands. The relative u or b burst times did not significantly correlate with rTE. f, Left panel, 1/f
components do not predict rTE. Right panel: comparison of the 1/f components of the average power spectrum across epochs and sensors for each participant. For this, the 1/f offset and expo-
nent per participant were used to reconstruct the aperiodic-only spectrum (Donoghue et al., 2020). Each line shows the aperiodic spectrum of one participant. The dashed black line shows the
mean aperiodic spectrum across participants. The yellow to brown shading indicates rTE. Extended Data Figure 2-1 further describes the stability of a burst dynamics over time.
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averaged across all epochs to obtain one PSD per voxel, per individual.
Then, we compensated the 1/f trend of the PSDs of each voxel and nor-
malized them by the grand mean PSD taken over all voxels on a per indi-
vidual basis. The grand-average a source estimates across participants for
retrospective and for prospective condition are presented in Extended
Data Figure 1-2a,b, respectively.

Statistical analyses. In the retrospective time estimations analyses,
the rTE, the iAPF, the a power and the relative burst time measurements
were all normally distributed as assessed by Shapiro–Wilk’s test (rTE
p¼ 0.232, iAPF p¼ 0.903, a power p¼ 0.809, relative a burst time p¼
0.156). However, the assumption of normality was not achieved for the
a burst amplitude (p¼ 0.011). In the prospective time estimations the
pTE, the iAPF, the periodic a power, the a burst amplitude, and the rel-
ative burst time were all normally distributed as assessed by Shapiro–
Wilk’s test (pTE p¼ 0.254, iAPF p¼ 0.980, a power p¼ 0.909, a burst
amplitude p¼ 0.068, relative burst time p¼ 0.374). In the visual count-
ing task, the rTE, the iAPF, the periodic a power, the a burst amplitude
and the relative burst time were all normally distributed as assessed by
Shapiro–Wilk’s test (rTE p¼ 0.168, iAPF p¼ 0.499, a power p¼ 0.419,
relative burst time p¼ 0.605).

For all normally distributed variables, we performed Pearson correla-
tion (r). For the non-normally distributed a burst amplitude in the ret-
rospective time task, we used Spearman correlation (r ). For each
significant correlation, we performed the Cook’s distance measure to
ensure the robustness of our results.

In the retrospective time analysis, we wished to clarify which of all
the predictor variables (a power, a burst amplitude and a relative burst
time) was best at accounting for the variability in retrospective time esti-
mates (rTE). For this, we devised a statistical approach that was highly
sensitive to the collinearity of the data. First, we orthogonalized the pre-
dictor variables using principal component analysis (PCA). Then, we
performed a principal component regression (PCR) to select the best (or
combination of) PCA predictor(s) explaining rTE. Last, we performed
multiple linear regressions to disentangle statistically the best predictor
(s) of rTE. Before applying PCA, we observed that the a burst ampli-
tudes were not normally distributed because of two outlier values.
Hence, we replaced these two values by the mean of the population: the
a burst amplitude was then normally distributed as assessed by Shapiro–
Wilk’s test (p¼ 0.158). The initial eigenvalues indicated that PCA1 and
PCA2 explained 84% and 14% of the variance, respectively. We excluded
PCA3, which explained only 3% of the variance. Second, we performed
a PCR using PCA1 and PCA2, which showed that PCA1 significantly
predicted rTE (b ¼ 0.08, t(53)¼ 3.83, p, 0.001) whereas PCA2 did not
(b ¼ �0.05, t(53) ¼ �1.02, p¼ 0.310). Hence, we selected PCA1 for the
last step. Last, we conducted four independent linear regressions using
rTE as dependent variable and a power, a burst amplitude, a relative
burst time and PCA1 as predictors. The goodness-of-fit of these four
models were assessed using the Akaike Information Criterion (AIC; the
lowest the AIC, the better the fit) from which we can conclude that the
relative a burst time was the best predictor of rTE (Table 1).

To compare the the iAPF, the periodic a power, the a burst ampli-
tude and the relative burst time between retrospective and prospective
timing task, we used paired two-sided t tests.

Results
In the retrospective time task (Fig. 1a), participants were asked
to remain in quiet wakefulness with opened eyes fixating on a
screen placed in front of them while being recorded with MEG.
A red dot signaled the beginning and the end of the recording,
which, unbeknownst to participants, lasted 2, 4, or 5min. At the
end of the recording, participants were unexpectedly asked to
estimate verbally and as precisely as possible (in minutes, sec-
onds) how much time elapsed between the two red dots. We
characterized participants’ retrospective time estimations as the
ratio between their reported duration and the elapsed time (clock
duration) to establish a measure of relative retrospective time
estimates (rTE). An rTE above 1 indicates that participants

overestimated elapsed time, an rTE below 1 indicates that partici-
pants underestimated it.

On average, participants (N ¼ 56) significantly underesti-
mated the duration of their quiet wakefulness during the MEG
recording (Fig. 1b; rTE¼ 0.78 6 0.26, t(55) ¼ �6.1, p, 0.001).
The underestimation of rTE strongly indicates that participants
did not pay attention to time (Polti et al., 2018), as predicted by a
lack of explicit orientation to time required by the experiment.

One property of duration estimation is its scalar property, in
which the variance sð Þ of a magnitude estimation increases with
its magnitude ðmÞ. As several durations were tested, we com-
puted the coefficients of variation (CV ¼ s rTE=mrTE

) for each and
found that, as predicted by scalar timing, the CVs were compara-
ble across durations (Gibbon, 1977; 2min: CV¼ 31%, 4min:
CV¼ 35%, 5min: CV¼ 35%), legitimizing the psychological
effectiveness of the retrospective verbal estimations (Chaumon et
al., 2022; Balcı et al., 2023).

Because of the known relation between impulsivity and tim-
ing (Wittmann and Paulus, 2008), we also tested the correlation
between rTE and participants’ impulsiveness scores (Stanford et
al., 2009). We found no significant correlations (r (35)¼ 0.03,
p¼ 0.871) between these two measures, suggesting that rTE was
selective to time estimation and did not reflect an individual’s
psychological trait.

We then turned to the individuals’ MEG recordings to quan-
tify a activity. We found that stronger a power during quiet
wakefulness predicted larger rTE (Fig. 1c; Extended Data Fig. 1-
1; r(54)¼ 0.43, p, 0.001): the larger the a power, the longer the
retrospective durations. Given this result, we explored iAPF
(Haegens et al., 2014), which has been implicated in numerous
perceptual timing experiments (Samaha and Postle, 2015; Cecere
et al., 2017; Minami and Amano, 2017; Ronconi et al., 2018;
Mioni et al., 2020). At the scale of minutes, and under the assump-
tion that spontaneous a oscillations are stationary, the a clock hy-
pothesis would have predicted a positive and linear relation
between iAPFs (Fig. 1d,e,g,h) and an individual’s rTE (Treisman,
1984). However, we found no evidence linking iAPF and retrospec-
tive duration estimation (r(54) ¼ �0.10, p¼ 0.469; Extended Data
Fig. 1-3), suggesting the a clock hypothesis does not hold as origi-
nally conceived.

The novel observation that a power linearly correlates with
individuals’ retrospective duration estimates relied on time-aver-
aged spectral quantifications, which reduce and impoverish the
temporal structure of brain activity over minutes to a single char-
acterization (i.e., a power). As neural oscillations show bursti-
ness with fluctuating amplitudes, frequencies, and waveform
morphologies (Cole and Voytek, 2017), we asked whether the
relation between a power and rTE could be better accounted for
by the dynamics of spectral fluctuations. In particular, we ques-
tioned whether the relative burstiness of a rhythms would be a
major predictor of elapsing time. Using state-of-the-art analyses

Table 1. Model comparisons for the prediction models

Predictor p-value F value b R2 AIC

a Relative burst time ,0.0001*** 18.09 0.50 0.25 �1.20
PCA1 (combination of a power, a burst
amplitude and a relative burst time)

,0.001*** 14.62 0.46 0.21 1.56

a Power ,0.001*** 12.50 0.43 0.19 3.32
a Burst amplitude 0.016* 6.23 0.32 0.10 8.86

F values indicate whether the regression model provides a better fit to the data than a constant value. b
Provides the standardized regression weights. R represents the zero-order correlation. The Akaike
Information Criterion (AIC) was calculated for all models. A lower AIC value indicates a better fit. The a rela-
tive burst time predictor showed the best fit.
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(Cole and Voytek, 2019), we detected the presence of a bursts in
the MEG data (Fig. 1f,i), quantified their amplitude and the rela-
tive time of a bursts during the time interval participants had to
estimate (Fig. 2). The relative burst time indexes the oscillatory
dynamics of a activity and ranges from 0% to 100%, signifying
no-to-sustained oscillatory a activity, respectively.

We found a significant positive correlation between rTE and
relative a burst time (r(54)¼ 0.50, p, 0.001; Fig. 2a), indicating
that the relative duration estimated retrospectively could be pre-
dicted by the relative amount of a bursts in the absence of overt
attention to time. This could be predicted as the mean spectral
estimation of a power intuitively fluctuates with both a burst
amplitude (Fig. 2b, upper panel) and relative a burst time (Fig.
2b, lower panel). Interestingly, characteristics of a spectral dy-
namics were stable for the entire period of quiet wakefulness
(Extended Data Fig. 2-1) and although the correlation between a
burst time and rTE varied over time, it remained systematically
significant. In the initial 30 s, a burst time showed a significant
correlation with rTE (r (39)¼ 0.46, p, 0.002), which steadily
increased until ;120 s and (60 s: r(39)¼ 0.43, p¼ 0.005; 90 s:
r (39)¼ 0.52, p, 0.001; 120 s: r(39)¼ 0.58, p, 0.001) and then
decreased (150 s: r(39)¼ 0.46, p¼ 0.003; 180 s: r(39)¼ 0.47, p¼
0.002; 210 s: r(39)¼ 0.37, p¼ 0.013; 240 s: r(39)¼ 0.33, p¼ 0.037).

Given that the different a characterizations are highly collin-
ear, we performed a principal component regression analysis to
establish whether the relative a burst time was a better predictor
of rTE than a power, a burst amplitude, or all of them combined
(Table 1). The first principal component significantly predicted
rTE (PCA1: b ¼ 0.08, t(53)¼ 3.83, p, 0.001; PCA2: b ¼ �0.05,
t(53) ¼ �1.02, p¼ 0.310) and it was selected for the independent
linear regressions using rTE as dependent variable and a power,
a burst amplitude, a relative burst time and PCA1 as predictors.
The goodness-of-fit of these four models were assessed using the
Akaike Information Criterion (AIC; the lowest the AIC, the bet-
ter the fit) from which we could conclude that the relative a
burst time alone was the best predictor of rTE (Table 1).

For theoretical reasons our primary working hypothesis tar-
geted a activity. However, because different oscillations have
been reported in timing tasks (Cravo et al., 2011; Kononowicz
and van Rijn, 2015; Kononowicz et al., 2019; van Wassenhove et
al., 2019; Herbst et al., 2022), we performed the same analysis
across multiple oscillatory bands (d : 1–4Hz; u : 4–7Hz; b : 15–
30Hz) to test the spectral selectivity of our findings. Besides a,
none of the tested spectral bursts were indicative of rTE (Fig. 2d,e,
d : r(54) ¼ �0.01, p¼ 0.926; u : r (54)¼ 0.17, p¼ 0.218; b : r(54)¼
0.05, p¼ 0.696) . As the reported activity of time cells across species
spans seconds and minutes (Pastalkova et al., 2008; MacDonald et
al., 2011; Kraus et al., 2015; Issa et al., 2020; Umbach et al., 2020;
Aghajan et al., 2022; Cogno et al., 2022; Tsao et al., 2022), one possi-
bility is that slow-activity building over time would contribute to
time estimations. Slow-activity could be captured as slow aperiodic
activity in the spectrum, therefore, we tested whether the aperiodic
spectrum or slope of the 1/f spectrum, capturing the slowest dy-
namics in the signals, would show dependency to participants’ rTE.
We found no such correlations (r (54) ¼ �0.10, p¼ 0.516; Fig. 2f).
Hence, neither the spectral dynamics in other oscillatory regimes,
nor scale-free fluctuations showed a significant relation with rTE,
supporting that a burst time may be selective to retrospective
timing.

We then asked whether the relation between a burst time and
retrospective time estimates would hold when participants
overtly oriented their attention to time. For this, we collected a
prospective timing task in a subset of participants who took part

in retrospective time task (N¼ 24). We instructed them before
the MEG recording to keep track of how much time elapses
between the two red dots (Fig. 3a, top panel). We computed the
ratio between participants’ verbal time estimates and clock dura-
tion as relative prospective time estimates (pTE). Participants’
pTE showed a significant overestimation of duration spent in
quiet wakefulness (Mean (M)¼ 1.20 6 0.36 a.u., t(23)¼ 2.75,
p¼ 0.006). This outcome was consistent with the fact that atten-
tion to time dilates its subjective duration (Brown, 1985; Fortin
et al., 2007; Polti et al., 2018). A one-tailed paired samples t test
comparing relative time estimates between the retrospective and
prospective tasks showed that participants estimated prospective
durations to last significantly longer than the retrospective ones
(t(23)¼ 4.22, p, 0.001; Fig. 3a, bottom panel). Since we sub-
sampled the original pool of participants (N¼ 24), we replicated
and verified that their rTE (retrospective task) remained predicted
by a power (r(22)¼ 0.45, p¼ 0.024) and by the relative a burst
time (r(22)¼ 0.55, p¼ 0.005). As both relations replicated, we pro-
ceeded with the identical spectral dynamic analyses and found no
significant correlations between pTE and a power (r(22) ¼ �0.23,
p¼ 0.270) or between pTE and relative a burst time (r(22) ¼
�0.08, p¼ 0.726; Fig. 3b). Remarkably, the a oscillatory dynamics
during quiet wakefulness were overall very similar whether partici-
pants were tested in the absence of attention to time instructions
(retrospective) or with overt instructions to time (prospective tim-
ing) to the exception of the relative a burst time (Fig. 3d). This
further demonstrated the selectivity of the effect in that the relative
burst time of a dynamics predicted retrospective timing (rTE) but
not prospective timing (pTE).

Last, we wondered whether the relation between a burst time
and rTE would hold when participants were engaged in a non-
timing task instead of being in quiet wakefulness. To test this, we
ran another experiment in which naive participants (N¼ 23) had
to count the total number of faint visual stimuli (a total of 17
events) presented on the screen during the MEG recording (Fig.
4a). At the end of the recording, participants were asked to
report how many stimuli were detected but also, and unexpect-
edly for them, to report how much time elapsed between the two
red dots. This experiment provides a very stringent control by
emulating a more ecologically valid situation in which individu-
als vacate to occupations distinct from attending to time.
Importantly, counting is also known to alter timing (Gaudreault
and Fortin, 2013) and a activity is strongly modulated by visual
attention (Hanslmayr et al., 2011; Nobre and Van Ede, 2018).
Thus, this control task altered both a cognitive and a neurophys-
iological factor largely predicted to affect timing. On average,
participants successfully reported the number of visual events
(percent correct count¼ 0.99 6 0.11). As we predicted, partici-
pants underestimated the duration of the task (rTE¼ 0.86 6
0.31, t(22) ¼ �2.11, p¼ 0.023; Fig. 4a). We then asked whether
their rTE could be predicted by a power, which was the case
(r(21)¼ 0.45, p¼ 0.031). We then replicated the relation between
rTE and the relative a burst time (r(21)¼ 0.51, p¼ 0.013; Fig.
4d). These results suggest that despite participants being engaged
in a visual counting task, the relative burst time of a dynamics
predicted individuals’ retrospective timing.

Discussion
In this series of experiments, we asked whether dynamic features
of spontaneous oscillatory activity can tell time at the scale of
minutes. We explored this question when individuals did not
orient their attention to time (quiet wakefulness; retrospective
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Figure 3. Relative a burst time does not predict prospective timing (N¼ 24). a, A total of 24 participants who took part in the retrospective timing task (rTE) were now asked to estimate
the duration that will elapse between the beginning and the end of the recording (prospective timing, pTE). As predicted, participants estimated the relative duration to be significantly longer
in the prospective task compared with the retrospective task. b–f, Each dot is a participant. Black lines are regression lines and gray shading are 95% CI. Retro is retrospective timing data;
Pros is prospective timing data. b, The relative duration of a burst showed no significant correlation with pTE. c, a Power (blue) in prospective and retrospective tasks were significantly corre-
lated and did not significantly differed between the two tasks (t(23) ¼ �1.73, p¼ . 097, blue box plots). For illustration purposes, Extended Data Figure 1-2b illustrates the mean source esti-
mates of a power in prospective timing. d, Participants’ individual’s a peak frequency (iAPF) (purple) in prospective and retrospective tasks were highly correlated and did not significantly
differed (t(23) ¼ �1.08, p¼ 0.289; purple box plots). e, a burst amplitude (orange) in the two tasks significantly correlated and did no significantly differed (t(23) ¼ �0.05, p¼ 0.960; or-
ange box plots). f, The relative a burst time (green) in prospective and retrospective timing was strongly correlated but differed between the two tasks: the relative a burst time was signifi-
cantly higher in prospective than in retrospective timing task (t(23) ¼ �8.80, p, 0.001; green plots). Data from participants P1 and P2 recorded during the prospective timing task are
illustrated with (g) power spectra and (h) oscillatory dynamics. ***p, 0.001.
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time estimation and episodic time stricto sensu) or when they
were asked to estimate time in advance (prospective time estima-
tion). We report that the relative time of spontaneous a bursting
activity during quiet wakefulness and during a visual task is a
high predictor of participants’ retrospective duration estimates at
the scale of minutes. This relation did not hold for prospective
timing, in which participants were explicitly told to pay attention
to time. Our results suggest that spontaneous mechanisms keep-
ing track of time when the observer is not told to keep track of it
(retrospective) may largely differ from those used when the ob-
server intently keeps track of it (prospective).

Out of the original studies testing the a clock hypothesis and
failing to find a direct link with duration perception at the scale
of minutes (Treisman, 1984; Kononowicz and van Wassenhove,

2016; van Wassenhove et al., 2019), the early study of Werboff
(Werboff, 1962) stands out as being the closest to the current ex-
perimental venue. In his study, the author compared the “a
wave-count” as the percentage of time a was present in the EEG
signal: individuals with a lower occurrence of a waves underesti-
mated elapsed time as compared with individuals with more a
waves. However, participants were tested at a time scale of a few
seconds (2 and 8 s) with a prospective time task. The methodo-
logical standards in 1962 are quite remote from our contempo-
rary ones, making it hard to make a direct comparison with our
observations. In fact, like a majority of early empirical efforts
using prospective timing (for review, see van Wassenhove et al.,
2019), we failed to find direct evidence between spontaneous a
rhythms and prospective duration estimation. Attending to time

Figure 4. a Power and relative a burst time predict retrospective timing despite a visual counting task (N¼ 23). a, Participants counted faint visual stimuli displayed at random times on
the screen during the MEG recording. No instructions about timing was provided. Participants performed well on the counting task and retrospectively underestimated the elapsed time. b, c,
Data from two participants (P3 and P4). b, P3 (rTE¼ 0.33) showed a flatter distribution of power spectral densities across sensors (blue) as compared with P4 (rTE¼ 1.04). c, P3 showed fewer
oscillatory bursts (green) than P4. To prevent contamination from the evoked responses elicited by the presentation of visual stimuli, 800 ms were taken out of the burst analysis (shaded
gray). d, rTE as a function of relative a burst time (%). Participants’ rTE significantly increased with higher relative burst time and stronger a power, replicating and extending our original
observations. Each dot is a participant. Black lines are regression lines and gray shading are 95% CI.
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may hinder our ability to capture the endogenous dynamics of
an internal clocking mechanism because of the diversity of cog-
nitive strategies deployed by participants to keep track of it.
Indeed, a great majority of studies use prospective timing tasks,
in which participants pay attention to the temporal statistics of
upcoming stimuli (Grondin, 2010; Vatakis et al., 2018; van
Wassenhove et al., 2019) engage oscillatory activity for a diversity
of sensorimotor and cognitive factors. These may confound
processes that are selective to the representation of time per se.
The retrospective timing tasks used here could be argued to
relate to implicit timing (Tsao et al., 2022; Sawatani et al., 2023).
Implicit timing tasks typically explore subsecond-to-second tem-
poral scales (Nobre et al., 2007; Nobre and Van Ede, 2018),
which are crucial for the structuring of sensory information in
perception and temporal expectations. Here, we explored the
time scale of minutes and used a single-trial approach to ensure
that participants were not aware of the goal of our study. Thus,
no (implicit) temporal learning could take place in this experi-
ment. Our approach is important for time scales that are most
relevant to episodic timing and that last several seconds, minutes,
or hours. Here, we thus used a minimalist retrospective time task
and the implication of a rhythms in episodic time tracking
became quite salient.

Although our results demonstrate the implication of rhythmic-
like activity in episodic timing, we do not interpret these findings
as evidence for a direct implementation of the a clock hypothesis,
at least not in the manner it was initially formulated. Rather, and
consistent with an information-theoretic view of time estimation
(Hicks et al., 1976; Gallistel, 1990), we suggest that the retrospec-
tive estimation of the passage of time by participants is linked to
episodic memory (Michon, 1975; Block, 1985; MacDonald, 2014)
and implemented as a count of bouts of awareness (or “events”)
during quiet wakefulness. The a clock hypothesis presented here
is not about counting time per se; rather, it is about counting
events spontaneously and endogenously instantiated as a burst. It
is important that we do not interpret such counting mechanism as
an explicit and overt counting process, but as an automatic parsing
and time-stamping mechanism of internal events. Such episodic
parsing would be most similar to an information theoretic event-
based clock model (Gallistel, 1990), which can be reconciled with
a symbolic approach of timing in memory (Friedman, 1993) and
the possible spontaneous dynamics of time cells observed in vari-
ous species (Pastalkova et al., 2008; MacDonald et al., 2011; Kraus
et al., 2015; Issa et al., 2020; Umbach et al., 2020; Aghajan et al.,
2022; Cogno et al., 2022; Tsao et al., 2022). This hypothesis, aligns
well with a recent proposal (Tsao et al., 2022), in that a bursts
may instantiate state-dependent network trajectories ultimately
feeding episodic time estimation.

During quiet wakefulness, the implication of a rhythms in
the regulation of the default-mode network is expected. In com-
bined EEG and fMRI recordings, the coexistence of positive and
negative fluctuations of neural networks activity with changes in
a synchronization have been reported (Goldman et al., 2002;
Laufs et al., 2003; Mantini et al., 2007): increases in a power tend
to correlate with an increase BOLD response in thalamic and in-
sular cortices, whereas a decrease in a power co-occurs with a
decrease in occipital and frontal regions (Goldman et al., 2002;
Laufs et al., 2003). Out of six resting-state networks identified dur-
ing quiet wakefulness (Mantini et al., 2007), the default mode net-
work (Raichle, 2015) and the dorsal attentional network (Fiebelkorn
and Kastner, 2020) have shown significant congruence with a power
fluctuations (Mantini et al., 2007). If the dorsal attention network
(Fiebelkorn and Kastner, 2020) is most readily associated with the

functional regulation of visual processing during perception, the
default mode network (Raichle, 2015) is mostly involved in endog-
enous processing. While thalamo-cortical circuitries are important
contributors to a activity (Steriade et al., 1990; Steriade, 1999;
Halgren et al., 2019), a significant implication of hippocampal ac-
tivity has been reported (Raichle, 2015). The presence of a bursts
suggest that recurrent state-dependent networks may mediate
transient or discrete bursts of neural firing in this frequency range.
Consistent with this, a rhythms are coupled to the functional state
of the default-mode network (Brookes et al., 2011) and a bursts
have recently been associated with memory replay (Higgins et al.,
2021). Consistent with the a clock hypothesis as an event-based
episodic tracking mechanism, a recent study demonstrated that in
the absence of sensory stimulation and feedforward inputs, a ac-
tivity endogenously regulates spontaneous thoughts from which
high level conscious features can be decoded including the where
and what content (Xie et al., 2020).

While a rhythms are the earliest described oscillations in
human brain activity (Berger, 1935), they are notoriously diffi-
cult to classify in the taxonomy of neural oscillations drawn from
animal neurophysiology (Buzsáki and Draguhn, 2004; Buzsáki et
al., 2013). While a rhythms are sometimes compared with u
oscillations seen in rodents, human u and a rhythms show intri-
guingly divergent developmental trajectories (Cellier et al., 2021)
with the precedence of u rhythms incrementally dominated by a
rhythms at seven to eight years old. In light of our findings, it
would be particularly interesting to explore how developmental
trajectories of episodic timing may or not follow those predicted
by neurophysiology. Additionally, the iAPF increases with age to
reach a value stable in adulthood and decreases again in aging
(Lindsley, 1939; Scally et al., 2018; Cellier et al., 2021). We did
not observe a correlational implication of iAPF in this study, but
exploiting a larger range of iAPF across ages or longitudinally
may provide reliable insights.

Taken together, we propose that a large-scale endogenous reg-
ulation of a burst activity may contribute to the internal counting
of events and bouts of conscious moments, which may support
time keeping mechanisms for the individual’s episodic when.
Given the simplicity of our experimental protocol, we believe that
this novel a clock hypothesis could be tested in a large range
of healthy and clinical population and could provide a neural
marker for the passage of time. We interpret our findings as
suggesting that in the absence of attention to time and tem-
poral task demands, a bursts may embody discrete states of
awareness like timestamps in our episodic landscape, from
which accurate duration estimates can be recollected retro-
spectively, in the individual’s future.
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