Highlights

Regulating neuronal excitation or inhibition via magnetic field coupling
Zhenghui Wen, Chunhua Wang, Quanli Deng, Hairong Lin

- The ion exchange in neurons can trigger time-varying magnetic fields that interact with each other
- Magnetic field coupling can be considered as a way to modulate the neuronal excitation
- When the inhibition magnetic field coupling is large enough, the neuronal firing mode is static
- The magnetic coupling and synaptic coupling equations are compared
Regulating neuronal excitation or inhibition via magnetic field coupling

Zhenghui Wen, Chunhua Wang*, Quanli Deng, Hairong Lin

College of computer science and electronic engineering, Hunan University, Changsha, 410082, China

Abstract

The ion exchange in neurons can trigger time-varying magnetic fields that interact with each other. In this work, the regulation of neuronal excitation and inhibition by coupling magnetic field is investigated. Firstly, models of magnetic field coupling under different conditions are proposed. The effect of the magnetic field is described by magnetic flux. And then, the excitation or inhibition magnetic field coupling is studied under different external excitation currents. The firing mode of neurons can be changed by adjusting the coupling intensity. In brief, we found that the magnetic field coupling can regulate the excitation and inhibition of neurons, and the excitation magnetic field coupling can promote the firing of neurons. When the inhibition magnetic field coupling is large enough, the neuronal firing mode is static. Magnetic field coupling can be considered as a way to modulate the neuronal excitation. In the end, the magnetic coupling and synaptic coupling equations are compared and the effects of modulation of magnetic field coupling on neuronal excitation and inhibition are investigated. Studying the magnetic field coupling of neurons is important for understanding how neurons transmit information.

Keywords: magnetic field coupling, Electromagnetic induction, Inhibition and excitation, Hindmarsh–Rose neuron

PACS: 0000, 1111

2000 MSC: 0000, 1111

*Corresponding author

Email address: wch1227164@hnu.edu.cn (Chunhua Wang)
1. Introduction

The membrane potential of a neuron is the difference in the concentration of charged ions inside and outside the membrane. When a neuron transmits information, charged ions move in and out of the cell membrane to generate an action potential. According to the Maxwell electromagnetic induction theorem, the movement of charged ions can trigger time-varying electromagnetic fields. The impact of magnetic fields on information transmission to neurons can help us better understand and explore life’s mysteries.

The memristor is the fourth basic circuit element, representing the mathematical relationship between charge and flux [1]. Coexistence attractor [2–4], hidden attractor [5–7], hyperchaotic attractor [8–10], circular chaotic attractors [11] and other phenomena have been identified in the research of chaos based on memristor, and such complicated dynamics have been exploited to encrypt [12–14]. Memristors have been used in circuit elements to simulate biological synaptic functions [15–17]. Various types of memristors were also being proposed. Fractional-order memristor [18–20], local active memristor [21–23], and so on.

Inspired by the magnetic flux physical characteristics of memristor [1], Ma et al. proposed to introduce magnetic flux into neuron model and HR neuron model under electromagnetic radiation in 2016 to obtain a variety of discharge modes [24, 25]. Based on this theory, The dynamic behaviors of different neuron models under electromagnetic radiation were explored [26–29]. For example, under the stimulation of electromagnetic radiation, FHN neurons can produce hidden extreme multistability phenomena [26]. Complex hidden cluster discharge patterns can be formed when the electromagnetic induction effect was applied to HR neurons [27]. The electrical activities of neurons under the electric fields were also considered in Refs. [28, 29]. Introducing external electromagnetic radiation through an inductor coil, Ref. [30] proposed a new neuron model under the influence of time-varying electric and magnetic fields as well as external electromagnetic radiation. By introducing Hamiltonian energy to measure magnetic field energy, the relationship between different neuron discharge modes and energy under electromagnetic radiation were studied, such as HR neuron [31–32], FHN neuron [33, 34], and Izhikevich neuron [35, 36]. The researchers looked beyond the effects of electromagnetic radiation on neurons to neural networks. In Refs. [37, 38], the chaotic dynamic behavior of the Hopfield neural network under the influence of external electromagnetic radiation on some neurons has been studied. The
influence of different external stimuli on the chaotic dynamics of the Hop-
field neural network was studied, and the energy transfer phenomenon of the
network under different stimuli was studied from the perspective of
Hamiltonian energy [39]. The modulation of different kinds of external elec-
tromagnetic stimulation on the dynamics of the Newman-Watts small-world
network model proved the feasibility of external electromagnetic stim-
ulation to control the evolution of the neural network model [40].

Neurons send messages to each other through synapses that can excite or
inhibit them. It would be interesting to discover another efficient method of
signaling communication between neurons. In [41], scholars studied magnetic
field coupling, which was the interaction between neuron magnetic fields, and
proposed the coupling neuron model. When both magnetic field coupling and
electrical synaptic coupling exist in neural networks, magnetic field coupling
can regulate the collective behavior of neural networks [42, 43]. In the case,
that magnetic field coupling, electric field coupling and synaptic coupling si-
multaneously act on the Newman-Watts small-world neuronal network, stan-
dard deviation and synchronization factor are introduced to provide useful
guidance for signal transmission between neurons [44]. The above studies
suggest that magnetic field coupling is another way of neuron signal propa-
gation.

However, it is a pity that the excitability and inhibition of neurons reg-
ulated by magnetic field coupling are seldom considered in previous work.
Synapses can make neurons excited or inhibited. As magnetic field coupling
is another way of neuron signal communication, the regulation of magnetic
field coupling on neuron excitation or inhibition should also be considered.

Based on the above discussion, this paper puts forward the concept of
excitation and inhibition of magnetic field coupling and proposes the corre-
sponding theoretical model. According to Abe’s theorem, the direction of the
magnetic field is determined by the direction of ion movement. Therefore,
the excitation and inhibition of neurons can be indicated by the direction
of the magnetic field. Based on this principle, the excitatory magnetic field
coupling and inhibitory magnetic field coupling models are proposed. It is
verified that excitatory magnetic field coupling can promote neuron excita-
tion, inhibitory magnetic field coupling can inhibit the corresponding neuron,
and the increase of coupling intensity to a certain degree makes the neuron
reach the static state.

The following of this paper is organized as, section 2 presents a model
for connecting two neurons with different types of magnetic fields; Section
3 studies two magnetic field coupling states under four discharge modes; Section 4 summarizes the full text.

2. Model description and scheme Considered

Synapses are the connections between neurons. And the importance of magnetic coupling as a possible way of transmitting information between neurons is undeniable. In order to study the modulation of excitation or inhibition of coupling neurons by magnetic field coupling. In this paper, we consider the response of the magnetic field coupled HR model to external stimulus currents in two cases: Case I. Excitatory magnetic field coupling model; Case II. Inhibitory magnetic field coupling model.

2.1. Excitatory magnetic field coupling model

In [41], a model of interaction between neuron magnetic fields was presented. In Refs [42, 44, 45], electrical synapses and magnetic fields were used for information interaction between neurons. and the two neurons connected by electrical synapses were both excited, so it can be considered that the magnetic coupling connecting the two excited neurons is also excitatory magnetic coupling. The corresponding excitatory magnetic field coupling model is shown below:

\[
\begin{align*}
\dot{x}_1 &= y_1 - ax_1^3 + bx_1^2 - z_1 + I_{ext} - k\rho(\varphi_1)x_1 \\
\dot{y}_1 &= c - dx_1^2 - y_1 \\
\dot{z}_1 &= r[s(x_1 + 1.6) - z_1] \\
\dot{\varphi}_1 &= k_1x_1 - k_2\varphi_1 + G_{ex}(\varphi_2 - \varphi_1) \\
\dot{x}_2 &= y_2 - ax_2^3 + bx_2^2 - z_2 + I_{ext} - k\rho(\varphi_2)x_2 \\
\dot{y}_2 &= c - dx_2^2 - y_2 \\
\dot{z}_2 &= r[s(x_2 + 1.6) - z_2] \\
\dot{\varphi}_2 &= k_1x_2 - k_2\varphi_2 + G_{ex}(\varphi_1 - \varphi_2),
\end{align*}
\]

where \(x, y, z\) and \(\varphi\) describe the membrane potential, recovery variables of slow current and adaptive current, and magnetic flux respectively. \(I_{ext}\) is the external stimulus current, the memristor coupling magnetic flux and membrane potential, its conductivity is \(\rho(\varphi) = \alpha + 3\beta\varphi^2\). \(G_{ex}(\varphi_1 - \varphi_2)\) and \(G_{ex}(\varphi_2 - \varphi_1)\), which represents the interaction of two magnetic fields. \(G_{ex}\) represents the coupling strength of the corresponding excitatory magnetic field, and the other parameters (\(a, b, c, d, k, r, s, k_1, k_2\)) are constants as \((1.0, 3.0, 1.0, 5.0, 1, 0.006, 4, 0.5, 0.5)\).
2.2. Inhibitory magnetic field coupling model

It is well known that synapses can be divided into inhibitory and excitatory synapses. Inhibitory synapses connect the neurons, and the presynaptic neuron is activated while the postsynaptic neuron is inhibited. In this paper, magnetic field coupling is another way of neuron information transmission. Therefore, there is also a corresponding inhibitory magnetic field coupling. That is, the upper-level neuron is activated, while the lower-level neuron is inhibited, and they communicate with one another via magnetic field coupling. In this work, we propose the inhibitory magnetic field coupled two neuron model as:

\[\begin{align*}
\dot{x}_1 &= y_1 - ax_1^3 + bx_1^2 - z_1 + I_{\text{ext}} - k\rho(\varphi_1)x_1 \\
\dot{y}_1 &= c - dx_1^2 - y_1 \\
\dot{z}_1 &= r[s(x_1 + 1.6) - z_1] \\
\dot{\varphi}_1 &= k_1 x_1 - k_2 \varphi_1 - G_{\text{in}}(\varphi_2 + \varphi_1) \\
\dot{x}_2 &= y_2 - ax_2^3 + bx_2^2 - z_2 + I_{\text{ext}} - k\rho(\varphi_2)x_2 \\
\dot{y}_2 &= c - dx_2^2 - y_2 \\
\dot{z}_2 &= r[s(x_2 + 1.6) - z_2] \\
\dot{\varphi}_2 &= k_1 x_2 - k_2 \varphi_2 + G_{\text{in}}(\varphi_1 + \varphi_2),
\end{align*}\]

where \(G_{\text{in}}\) is the coupling strength of the corresponding inhibitory magnetic field. It is well known that adjusting the applied excitation current can alter the firing pattern of neurons. In order to explore the influence of different degrees of magnetic field coupling intensity on neuronal firing mode under different circumstances, we studied two magnetic field coupling cases of the proposed model with four different firing patterns, as shown in Table 1.

<table>
<thead>
<tr>
<th>Different states</th>
<th>(I_{\text{ext}} = 1.8)</th>
<th>(I_{\text{ext}} = 2.3)</th>
<th>(I_{\text{ext}} = 3.2)</th>
<th>(I_{\text{ext}} = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excited-Excited</td>
<td>Sec3.1-Case1</td>
<td>Sec3.1-Case2</td>
<td>Sec3.1-Case3</td>
<td>Sec3.1-Case4</td>
</tr>
<tr>
<td>Excited-Inhibited</td>
<td>Sec3.2-Case1</td>
<td>Sec3.2-Case2</td>
<td>Sec3.2-Case3</td>
<td>Sec3.2-Case4</td>
</tr>
</tbody>
</table>

2.3. Stability analysis for the equilibrium states

The equilibrium Eq. (3) is found by zeroing the left side of Eq. (1)
\[
\begin{align*}
\begin{cases}
y_1 - ax_1^3 + bx_1^2 - z_1 + I_{ext} - k\rho(\phi_1)x_1 = 0 \\
c - dx_1^2 - y_1 = 0 \\
r[s(x_1 + 1.6) - z_1] = 0 \\
k_1x_1 - k_2\phi_1 + G_{ex}(\phi_2 - \phi_1) = 0 \\
y_2 - ax_2^3 + bx_2^2 - z_2 + I_{ext} - k\rho(\phi_2)x_2 = 0 \\
c - dx_2^2 - y_2 = 0 \\
r[s(x_2 + 1.6) - z_2] = 0 \\
k_1x_2 - k_2\phi_2 + G_{ex}(\phi_1 - \phi_2) = 0 \\end{cases}
\end{align*}
\]

The equations may be solved using MATLAB, and the real solution is the equilibrium point. The following approach is used to construct the Jacobian matrix corresponding to Eq. (1).

\[
J = \begin{pmatrix}
J_{11} & 1 & -1 & J_{14} & 0 & 0 & 0 & 0 \\
J_{21} & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
J_{31} & 0 & J_{33} & 0 & 0 & 0 & 0 & 0 \\
J_{41} & 0 & 0 & J_{44} & 0 & 0 & 0 & J_{48} \\
0 & 0 & 0 & 0 & J_{55} & 1 & -1 & J_{58} \\
0 & 0 & 0 & 0 & J_{65} & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & J_{75} & 0 & J_{77} & 0 \\
0 & 0 & 0 & J_{84} & J_{85} & 0 & 0 & J_{88} \\
\end{pmatrix}
\] (4)

where \(J_{11} = 2bx_1 - 3ax_1^2 - k(\alpha + 3\beta\phi_1^2) \); \(J_{21} = -2dx_1 \); \(J_{31} = J_{75} = rs \); \(J_{55} = J_{11} = k_1 \); \(J_{41} = -6k\beta\phi_1x_1 \); \(J_{33} = J_{77} = -r \); \(J_{88} = J_{44} = -k_2 - G_{ex} \); \(J_{48} = J_{84} = G_{ex} \); \(J_{55} = 2bx_2 - 3ax_2^2 - k(\alpha + 3\beta\phi_2^2) \); \(J_{65} = -2dx_2 \); \(J_{58} = -6k\beta\phi_2x_2 \).

The eigenvalues of the appropriate equilibrium point are calculated by substituting it into the Jacobian matrix. Table 2 summarizes the findings.

The related equilibrium Eq. (5) is found by zeroing the left side of Eq. (2).

\[
\begin{align*}
\begin{cases}
y_1 - ax_1^3 + bx_1^2 - z_1 + I_{ext} - k\rho(\phi_1)x_1 = 0 \\
c - dx_1^2 - y_1 = 0 \\
r[s(x_1 + 1.6) - z_1] = 0 \\
k_1x_1 - k_2\phi_1 - G_{in}(\phi_2 + \phi_1) = 0 \\
y_2 - ax_2^3 + bx_2^2 - z_2 + I_{ext} - k\rho(\phi_2)x_2 = 0 \\
c - dx_2^2 - y_2 = 0 \\
r[s(x_2 + 1.6) - z_2] = 0 \\
k_1x_2 - k_2\phi_2 + G_{in}(\phi_1 + \phi_2) = 0 \\end{cases}
\end{align*}
\] (5)
The Jacobian matrix of (2) is yielded as

\[J = \begin{pmatrix} J_{11} & 1 & -1 & J_{14} & 0 & 0 & 0 & 0 \\ J_{21} & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ J_{31} & 0 & J_{33} & 0 & 0 & 0 & 0 & 0 \\ J_{41} & 0 & 0 & J_{44} & 0 & 0 & J_{48} & 0 \\ 0 & 0 & 0 & 0 & J_{55} & 1 & -1 & J_{58} \\ 0 & 0 & 0 & 0 & J_{65} & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & J_{75} & 0 & J_{77} & 0 \\ 0 & 0 & 0 & 0 & J_{84} & J_{85} & 0 & 0 & J_{88} \end{pmatrix} \]

(6)

where \(J_{11} = 2bx_1 - 3ax_1^2 - k(\alpha + 3\beta\varphi_1^2) \); \(J_{21} = -2dx_1 \); \(J_{31} = J_{75} = rs \); \(J_{85} = J_{11} = k_1 \); \(J_{14} = -6k\beta\varphi_1 x_1 \); \(J_{33} = J_{77} = -r \); \(J_{44} = -k_2 - G_{in} \); \(J_{48} = -G_{in} \); \(J_{55} = 2bx_2 - 3ax_2^2 - k(\alpha + 3\beta\varphi_2^2) \); \(J_{65} = -2dx_2 \); \(J_{58} = -6k\beta\varphi_2 x_2 ; J_{84} = G_{in} \); \(J_{88} = -k_2 + G_{in} \).

The equilibrium point of a real number solution is first found by solving equations, then replaced into the Jacobian matrix, and the stability of the equilibrium point is determined by its eigenvalue. Table 2 summarizes the findings.

Neither excitatory magnetic field coupling nor inhibitory magnetic field coupling has an equilibrium point when \(G_{ex} = 0 \) or \(G_{in} = 0 \). The applied excitation current determines the equilibrium point in excitatory magnetic field coupling, and the excitatory magnetic field coupling intensity has a minor effect on the eigenvalue but no effect on the equilibrium point. The inhibitory magnetic field coupling intensity can affect both the equilibrium point and the eigenvalue in the inhibitory magnetic field coupling. The stability of the equilibrium point varies from unstable equilibrium point to stable equilibrium point as the magnetic field coupling strength increases.

3. Numerical results and discussion

In numerical study, this section uses the fourth order Runge-Kutta algorithm to solve the dynamic equation with transient period of 1200. Neurons in the model of the initial value are set to \((x_1, y_1, z_1, \varphi_1, x_2, y_2, z_2, \varphi_2) = (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)\), the other parameters are chosen as \(a=1.0 \), \(b=3.0 \), \(c=1.0 \), \(d=5.0 \), \(r=0.006 \), \(s=4 \), \(k_1 = 0.5 \), \(k_2 = 0.5 \), \(\alpha = 0.1 \), \(\beta = 0.02 \). For clear illustration, the influence of applied current on the electrical activity of neurons can be illustrated by the inter spike interval (ISI) bifurcation diagram as shown in Fig.1.
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Remarks</th>
<th>Equilibrium points</th>
<th>Stabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{ex} = 3.2, G_{ex} = 0.2$</td>
<td>Equilibrium points</td>
<td>-0.6865, -1.3561, 3.6542, -1.3729</td>
<td>Unstable saddle point</td>
</tr>
<tr>
<td></td>
<td>eigenvalues</td>
<td>-6.8806, -6.8801, -0.8992, -0.4939</td>
<td></td>
</tr>
<tr>
<td>$I_{ex} = 3.2, G_{ex} = 0.8$</td>
<td>Equilibrium points</td>
<td>-0.6865, -1.3561, 3.6542, -1.3729</td>
<td>Unstable saddle point</td>
</tr>
<tr>
<td></td>
<td>eigenvalues</td>
<td>-6.8806, -6.8783, -2.1052, 0.0213</td>
<td></td>
</tr>
<tr>
<td>$I_{ex} = 3.2, G_{in} = 0.2$</td>
<td>Equilibrium points</td>
<td>-0.7000, -1.4499, 3.6001, -0.3130</td>
<td>Unstable saddle-focus</td>
</tr>
<tr>
<td></td>
<td>eigenvalues</td>
<td>-6.9387, -6.7784, -0.6976±0.2024i</td>
<td></td>
</tr>
<tr>
<td>$I_{ex} = 3.2, G_{in} = 0.8$</td>
<td>Equilibrium points</td>
<td>-0.6538, -1.1374, 3.7847, 2.5494</td>
<td>Unstable saddle-focus</td>
</tr>
<tr>
<td></td>
<td>eigenvalues</td>
<td>-6.7882, -6.5947, -1.3027±0.8024i, 0.1508, 0.0739, 0.0160, 0.0382</td>
<td></td>
</tr>
<tr>
<td>$I_{ex} = 3.2, G_{in} = 1.4$</td>
<td>Equilibrium points</td>
<td>-0.5654, -0.5986, 4.1383, 4.6618</td>
<td>Unstable saddle-focus</td>
</tr>
<tr>
<td></td>
<td>eigenvalues</td>
<td>-6.6408, -6.7855, -1.9026±1.4007i, -0.1846, 0.0022±0.0597i, -0.0255</td>
<td></td>
</tr>
<tr>
<td>$I_{ex} = 3.2, G_{in} = 1.5$</td>
<td>Equilibrium points</td>
<td>-0.5517, -0.5220, 4.1931, 4.9551</td>
<td>Stable focus-node</td>
</tr>
<tr>
<td></td>
<td>eigenvalues</td>
<td>-6.6418, -6.8424, -2.0024±1.5005i, -0.2134, -0.0102±0.0601i, -0.0226</td>
<td></td>
</tr>
<tr>
<td>$I_{ex} = 3.2, G_{in} = 2$</td>
<td>Equilibrium points</td>
<td>-0.4913, -0.2067, 4.4350, 6.2435</td>
<td>Stable focus-node</td>
</tr>
<tr>
<td></td>
<td>eigenvalues</td>
<td>-6.7493, -7.1999, -2.5013±1.9992i, -0.3363, -0.1025, -0.0430, -0.0159</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Bifurcation diagram of neuron membrane potential and different external stimulus signals
ISI reflects the distance between two peaks in the firing sequence diagram of neurons. It is obvious that the firing modes of HR neuronal model experienced several prominent transitions. When the external stimulus I_{ext} is too small, the neuron is in the quiescent state, and then with the increase of external stimulation, the neuron experiences spike discharge, burst discharge, chaotic discharge and periodic oscillation. We can select the appropriate external excitation current to control the firing mode of neurons, as shown in Fig. 2.

As shown in Fig. 2, various modes of electrical activity can be triggered by selecting the right applied excitation current. And two neurons with different initial values fired in the same pattern without synaptic coupling or magnetic coupling. When the external excitation current is fixed, the regulation of magnetic field coupling on neuron excitation or inhibition under different discharge modes is explored through bifurcation analysis of magnetic field coupling intensity.
3.1. Inhibitory magnetic field coupling

In case 1, two neurons with different initial values at peak discharge were selected to change the intensity of magnetic field coupling, and the effect of magnetic field coupling on neuron firing mode was detected. Bifurcation of I_{ext} with parameter G_{in} and neuron firing patterns are shown in Fig. 3 and Fig. 4.

![Figure 3: Bifurcation diagram of neuronal firing ISI with different Inhibitory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron)](image)

It has been discovered that changing the magnetic coupling strength alters the firing mode of neurons. With the increase of magnetic field coupling intensity, the firing mode of neuron 1 becomes more and more complex, and the observed spikes become more and more intensive. To observe the bifurcation diagram in greater detail, zoom in on the bifurcation diagram near $G_{\text{in}} = 0.8$. Until the magnetic field coupling intensity reaches a certain degree, the neuron starts to inhibit the firing. We can find that the bifurcation diagram disappears, indicating that the neuron is stationary. With the increase of magnetic coupling intensity, the amplitude and frequency of the
Figure 4: Two neurons with different initial values were sampled with different Inhibitory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron). (a) $G_{in} = 0$; (b) $G_{in} = 0.2$; (c) $G_{in} = 0.8$; (d) $G_{in} = 2$ The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
membrane potential of neuron 2 became smaller and smaller, and reached the quiescent state before neuron 1.

In case 2, the intensity of magnetic field coupling was changed to detect the influence of magnetic field coupling on neuron firing mode. The bifurcation diagram of ISI and the time series diagram are shown in Fig. 5 and Fig. 6.

![Bifurcation diagram of neuron with different Inhibitory magnetic field coupling intensity](image)

Figure 5: Bifurcation diagram of neuron with different Inhibitory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron)

With the increase of excitation current, more inhibitory magnetic field coupling is needed to make the neuron reach the quiescent state. The different discharge patterns of two neurons were observed. The two neurons move from the same firing mode to a different firing mode as a result of inhibitory magnetic coupling. Fig. 6 shows the existence of burst discharge and subthreshold oscillation, and the existence of burst discharge and chaotic state. And when the neuron is stationary, the membrane potential of neuron 1 is lower than that of neuron 2.

In case 3, two neurons with different initial values at chaotic discharge were selected to change the intensity of magnetic field coupling, and the effect
Figure 6: Two neurons with different initial values were sampled with different Inhibitory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron). (a) $G_{in} = 0$; (b) $G_{in} = 0.2$; (c) $G_{in} = 0.8$; (d) $G_{in} = 2$ The initial values are selected as $(0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)$
of magnetic field coupling on neuron firing mode was detected. Bifurcation of ISI with parameter G_{in} and neuron firing patterns are shown in Fig. 7 and Fig. 8.

Figure 7: Bifurcation diagram of neuron with different inhibitory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron).

As can be seen from the diagram, neurons can have a variety of discharge modes by adjusting the magnetic field coupling intensity. With the increase of magnetic field coupling intensity, the discharge modes of the two neurons change from chaos state to burst state and period-1 discharge and static state.

In case 4, two neurons at periodic oscillation were selected to change the intensity of magnetic field coupling, and the effect of magnetic field coupling on neuron firing mode was detected. Bifurcation of ISI with parameter G_{in} and neuron firing patterns are shown in Fig. 9 and Fig. 10.

The discharge mode can be controlled by selecting suitable magnetic coupling intensity. The two neurons move from the same firing mode to a different firing mode as a result of inhibitory magnetic coupling. When $G_{in} = 2$, the neuron firing pattern is subthreshold oscillation rather than resting, as
Figure 8: Two neurons with different initial values were sampled with different Inhibitory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron). (a) $G_{in} = 0$; (b) $G_{in} = 0.2$; (c) $G_{in} = 0.8$; (d) $G_{in} = 2$ The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
Figure 9: Bifurcation diagram of neuron with different Inhibitory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron)
Figure 10: Two neurons with different initial values were sampled with different Inhibitory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron). (a) $G_{in} = 0$; (b) $G_{in} = 0.2$; (c) $G_{in} = 0.8$; (d) $G_{in} = 2$ The initial values are selected as $(0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)$
shown in Fig. 10(d). And with the increase of external stimulus current, the two neurons need more inhibitory magnetic coupling strength to reach the resting state.

3.2. Excitatory magnetic field coupling

In case 1, Two neurons with peak discharge were stimulated by an excitatory coupling magnetic field, and then the coupling intensity was changed to observe the discharge of the neurons without synaptic coupling, the results are presented in Fig.11 and Fig 12.

![Bifurcation diagram of neuron with different excitatory magnetic field coupling intensity](https://ssrn.com/abstract=4081909)

Figure 11: Bifurcation diagram of neuron with different excitatory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron)

With the increase of magnetic coupling intensity, the firing mode of the two neurons becomes more and more complex, and the observed spikes become denser. The firing mode of the neurons changes from peak discharge to period-2 discharge.

In case 2, Two neurons with burst discharge were stimulated by an excitatory coupling magnetic field, and then the coupling intensity was changed
Figure 12: Two neurons with different initial values were sampled with different excitatory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron). (a) $G_{ex} = 0$; (b) $G_{ex} = 0.2$; (c) $G_{ex} = 0.8$; (d) $G_{ex} = 2$ The initial values are selected as $(0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)$
to observe the discharge of the neurons without synaptic coupling, the results are presented in Fig. 13 and Fig. 14.

![Bifurcation diagram of neuron with different excitatory magnetic field coupling intensity](image)

Figure 13: Bifurcation diagram of neuron with different excitatory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron)

Neurons firing in period-2 discharge flip to firing in period-3 discharge after being activated by an excitatory magnetic coupling. And it was found that excitatory magnetic fields made neurons asynchronous.

In case 3, Two neurons with chaotic discharge were stimulated by an excitatory coupling magnetic field, and then the coupling intensity was changed to observe the discharge of the neurons without synaptic coupling, the results are presented in Fig.15 and Fig. 16.

The bifurcation diagram shows that the two neurons are in chaotic discharge, but through the sequence diagram, we can find that the excitatory magnetic coupling promotes the neuron discharge.

In case 4, Two neurons with Periodic oscillation were stimulated by an excitatory coupling magnetic field, and then the coupling intensity was changed to observe the discharge of the neurons without synaptic coupling, the results are presented in Fig.17 and Fig. 18.
Figure 14: Two neurons with different initial values were sampled with different excitatory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron). (a) $G_{ex} = 0$; (b) $G_{ex} = 0.2$; (c) $G_{ex} = 0.8$; (d) $G_{ex} = 2$ The initial values are selected as $(0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)$
Figure 15: Bifurcation diagram of neuron with different excitatory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron)
Figure 16: Two neurons with different initial values were sampled with different excitatory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron). (a) $G_{ex} = 0$; (b) $G_{ex} = 0.2$; (c) $G_{ex} = 0.8$; (d) $G_{ex} = 2$ The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
Figure 17: Bifurcation diagram of neuron with different excitatory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron)
Figure 18: Two neurons with different initial values were sampled with different excitatory magnetic field coupling intensity (the blue is the response of the first neuron, and the orange is the response of the second neuron). (a) $G_{ex} = 0$; (b) $G_{ex} = 0.2$; (c) $G_{ex} = 0.8$; (d) $G_{ex} = 2$ The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
In conclusion, magnetic coupling has the ability to impact neuronal excitation or inhibition. Excitatory magnetic field coupling can benefit to neuron firing, but it can also affect neuron firing patterns, complicate electrical activity. Inhibitory magnetic field coupling can enhance neuron firing when the coupling intensity is small, but it can inhibit neuron firing when the coupling intensity is strong. The neurons enter a static state when the magnetic coupling strength reaches a critical point. As the external stimulus current increases, more inhibitory magnetic field coupling strength is required to make the neuron enter the quiescent state.

4. Conclusions

Table 3 lists the synaptic coupling and magnetic coupling models of neurons. In contrast to electrical synapses, magnetic coupling has inhibitory effects. Chemical synaptic coupling is unidirectional, while magnetic coupling is bidirectional and has no time delay. As a means of information transmission between neurons, magnetic field coupling may have similar properties to synaptic coupling. In this paper, we explore the modulation of neural excitation and inhibition by magnetic coupling. The electrical activity of neurons can be promoted by increasing the magnetic coupling intensity of the excitatory model. A high enough inhibitory magnetic coupling intensity to make the neuron quiescent. These results have a certain significance for further revealing the mechanism of information interaction between neurons.

5. Acknowledgement

This work is supported by the Major Research Plan of the National Natural Science Foundation of China (No.61971185), the National Natural Science Foundation of China (No.91964108) and Natural Science Foundation of Hunan Province(2020JJ4218).

6. Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work in this paper.
Table 3: Different ways of coupling HR neurons

<table>
<thead>
<tr>
<th>Different coupling</th>
<th>Equations</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| **Excitatory** | $x_1 = y_1 - ax_1^3 + bx_1^2 - z_1 + I_{ext} - k_\rho(\varphi)x_1 + D(x_2 - x_1)$
$y_1 = c - dx_1^2 - y_2$
$z_1 = r[s(x_1 + 1.6) - z_1]$
| electrical synaptic coupling | $\varphi_1 = k_1x_1 - k_2\varphi_1$
$x_2 = y_2 - ax_2^3 + bx_2^2 - z_2 + I_{ext} - k_\rho(\varphi)x_2 + D(x_1 - x_2)$
$y_2 = c - dx_2^2 - y_2$
$z_2 = r[s(x_2 + 1.6) - z_2]$
| bidirectional, coupling, electric field | |
| **Excitatory** | $x_1 = y_1 - ax_1^3 + bx_1^2 - z_1 + I_{ext} - k_\rho(\varphi)x_1$
| chemical synaptic coupling | $y_1 = c - dx_1^2 - y_2$
$z_1 = r[s(x_1 + 1.6) - z_1]$
| $\varphi_1 = k_1x_1 - k_2\varphi_1$
| $x_2 = y_2 - ax_2^3 + bx_2^2 - z_2 + I_{ext} - k_\rho(\varphi)x_2$
| unidirectional coupling, time delay, neurotransmitter |
| **Inhibitory** | $x_1 = y_1 - ax_1^3 + bx_1^2 - z_1 + I_{ext} - k_\rho(\varphi)x_1$
| chemical synaptic coupling | $y_1 = c - dx_1^2 - y_2$
$z_1 = r[s(x_1 + 1.6) - z_1]$
| $\varphi_1 = k_1x_1 - k_2\varphi_1$
| $x_2 = y_2 - ax_2^3 + bx_2^2 - z_2 + I_{ext} - k_\rho(\varphi)x_2$
| unidirectional coupling, time delay, neurotransmitter |
| **Excitatory** | $x_1 = y_1 - ax_1^3 + bx_1^2 - z_1 + I_{ext} - k_\rho(\varphi)x_1$
| magnetic field coupling | $y_1 = c - dx_1^2 - y_2$
$z_1 = r[s(x_1 + 1.6) - z_1]$
| $\varphi_1 = k_1x_1 - k_2\varphi_1 + G_{ext}(\varphi_2 - \varphi_1)$
| $x_2 = y_2 - ax_2^3 + bx_2^2 - z_2 + I_{ext} - k_\rho(\varphi)x_2$
| bidirectional coupling, magnetic field |
| **Inhibitory** | $x_1 = y_1 - ax_1^3 + bx_1^2 - z_1 + I_{ext} - k_\rho(\varphi)x_1$
| magnetic field coupling | $y_1 = c - dx_1^2 - y_2$
$z_1 = r[s(x_1 + 1.6) - z_1]$
| $\varphi_1 = k_1x_1 - k_2\varphi_1 + G_{ext}(\varphi_2 + \varphi_1)$
| $x_2 = y_2 - ax_2^3 + bx_2^2 - z_2 + I_{ext} - k_\rho(\varphi)x_2$
| bidirectional coupling, magnetic field |
References

29

Electronic copy available at: https://ssrn.com/abstract=4081909

[35] Y. Yang, J. Ma, Y. Xu, Y. Jia, Energy dependence on discharge mode of izhikevich neuron driven by external stimulus under electromagnetic...

