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Abstract: The resting-state paradigm is frequently applied to study spontaneous activity of the brain
in normal and clinical conditions. However, the relationship between the ongoing experience of
mind wandering and the individual biological signal is still unclear. We aim to estimate associations
between subjective experiences measured with the Amsterdam Resting-State Questionnaire and
data-driven components of an electroencephalogram extracted by frequency principal component
analysis (f-PCA). Five minutes of resting multichannel EEG was recorded in 226 participants and six
EEG data-driven components were extracted—three components in the alpha range (peaking at 9,
10.5, and 11.5 Hz) and one each in the delta (peaking at 0.5 Hz), theta (peaking at 5.5 Hz) and beta
(peaking at 17 Hz) ranges. Bayesian Pearson’s correlation revealed a positive association between
the individual loadings of the theta component and ratings for Sleepiness (r = 0.200, BF10 = 7.676),
while the individual loadings on one of the alpha components correlated positively with scores for
Comfort (r = 0.198, BF10 = 7.115). Our study indicates the relevance of assessments of spontaneous
thought occurring during the resting-state for the understanding of the individual intrinsic electrical
brain activity.

Keywords: EEG; individual differences; subjective experience; frequency principal component
analysis; f-PCA

1. Introduction

The resting-state paradigm is frequently applied in neuroimaging research to study
spontaneous activity of the brain [1,2]. This provides a noninvasive insight into the brain’s
intrinsic activity in health and disease [3–6] and helps to elucidate the role of these intrinsic
activities in sensory, motor, and cognitive processes. However, despite its straightforward
application, the results can be sensitive to participant-, procedure-, and measurement-
related factors such as sex, emotional state, body weight, state of vigilance, participant’s
body position, choice of the reference and frequency bands when the EEG is recorded,
and extremal irritants such as fMRI background noise, to name a few [7–10]. While a
majority of these factors can be minimized or taken into account during statistical evalua-
tion, the participants’ mental activities, even during a brief resting-state session, cannot
be precisely controlled, and the relationship between the ongoing experience of mind
wandering and biological signals is still unclear [11–13]. Hence, there is a need to quantify
participants’ subjective experiences, which can then be related to objectively observed
individual physiological outcomes.

To quantify participants’ subjective experiences during a resting-state session, several
resting-state questionnaires have been introduced [14,15]. The Amsterdam Resting-State
Questionnaire (ARSQ) [16,17] assesses ten mind-wandering domains that participants
might experience during the resting session: Discontinuity of Mind (DoM), referring to the
dynamics of ongoing thoughts; Theory of Mind (ToM), referring to other-people-related
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thoughts; Self, referring to self-related thoughts; Planning, referring to future-directed
thoughts; Sleepiness, referring to the level of drowsiness; Comfort, referring to the level
of relaxation during the session; Somatic Awareness (SA), referring to the interoceptive
awareness of one’s own body; Health Concern (HC), referring to general well-being;
Visual Thought (Vis), referring to visual imagery during mind wandering; and Verbal
Thought (VT), referring to spontaneous thoughts formulated in words. Several EEG,
fMRI, and behavioral studies have reported the relationship between ARSQ domains and
physiological or psychological variables in healthy [16–26] and clinical cohorts [27,28],
confirming the importance of combined measures of subjective experience and biologically
defined signals.

The quantification of subjective thoughts and emotions can help to improve the sensi-
tivity of neuroimaging biomarkers in clinical and pharmacological studies [16]. However,
the evaluation of biological signals may be performed in various ways with different
purposes. For a resting-state EEG, the power spectrum is typically evaluated, and the
oscillations of electrical brain activity are defined by spectral bands: delta (0.5–3.5 Hz),
theta (4–7.5 Hz), alpha (8–13 Hz), beta (13.5–30 Hz), and gamma (30.5–100 Hz) [6]. Each of
these traditional frequency bands is associated with distinct functions and can be affected
by neuropsychiatric disorders or by vigilance state [5,6,29]. Nevertheless, the boundaries
between the different frequency bands can vary across studies and labs, with some bands
further being divided into sub-bands with distinct sources and functions [6,30,31], making
the evaluation process biased and results difficult to generalize. Recently, attention has
been paid to this problem, and methods aiming at the automatic detection of theta and
alpha transition boundaries [32] or parametrizing neural power spectra as a combination
of an aperiodic component and putative periodic oscillatory peaks [33] were proposed.

Alternatively, frequency principal components analysis (f-PCA) has been offered to
decompose the EEG frequency spectral structure into meaningful distinct components
with the inherent advantage of providing a data-driven approach across the traditional
bands [31,34]. This approach has been successfully implemented in both healthy and clinical
samples. Previous studies compared f-PCA outcomes in young and older subjects [35]
as well as in young adults and children [36], and attributed observed differences to the
effects of brain maturation. Moreover, f-PCA has been suggested as a tool to identify
response biomarkers for antidepressant treatment [34,37]. The association between f-
PCA outcomes and state measures has also been shown: a negative relationship was
reported between multiple alpha components and skin conductance levels [38], pointing
to the role of alpha activity as an index of brain arousal [39]. Finally, the components
and their topographical distribution are highly similar in both eyes-open and eyes-closed
conditions [31,40,41]. Nevertheless, this approach has not yet been implemented to assess
the potential associations between EEG features and subjective resting-state experiences.

In this study, we implement an f-PCA approach to quantify frequency components in
a large sample of young healthy volunteers, and we relate the outcomes to the subjective
experiences of the resting-state condition. Based on the known associations between alpha
activity and arousal, we expect at least some of the alpha-range (8–13 Hz) components
(f-PCs) to be positively associated with the subjective ratings for the ARSQ domain of
Sleepiness. Similarly, based on the initial observation by Diaz et al. [16], it is expected
that at least one f-PC in the theta frequency range (4–7.5 Hz) is positively correlated with
the ARSQ domain of Sleepiness. Finally, in line with the report by Portnova et al. [22],
we anticipate that at least one of the alpha f-PCs is positively associated with the ARSQ
domain of Planning. We also evaluate other possible associations between distinct f-PCs
and the domains of the ARSQ.

2. Materials and Methods
2.1. Participants

Two-hundred and twenty-six participants were included in the experiment (F = 131,
M = 95; age 23, 41, ±3.87). Participants’ ages ranged from 19 to 35 years. All females were
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healthy, nonpregnant, not using hormonal contraception, and reported experiencing regular
menstrual cycles. Based on self-reports, 107 females participated in the study during the
early follicular phase (menses), 20 during the luteal phase, and 4 during the ovulatory
phase. All subjects gave their written informed consent to participate, and the study was
approved by the Vilnius Regional Biomedical Research Ethics Committee. Participants
with any reported neurological or psychiatric disorders, any kind of addiction, or the use
of psychotropic substances were excluded. Participants were asked not to use nicotine and
caffeine 2 h prior to the study.

2.2. Data Collection

Five minutes of resting-state EEG was recorded in a dim-lighted, sound-attenuated,
and electrically shielded room while participants were comfortably seated in the upright
position. Before the start of the recording session, participants were instructed to stay still
with their eyes closed, not to think about anything in particular, and not to fall asleep.
Right after the EEG recording session, participants completed the Lithuanian version of
the ARSQ, where they had to retrospectively rate the statements about the emotions and
thoughts from 1 (completely disagree) to 5 (completely agree).

EEG data were collected using 64 Silver/Silver Chloride electrodes placed according
to the international 10–10 system and mounted on an elastic WaveGuard EEG cap and
EEG equipment (ANT Neuro, The Netherlands). All electrodes were referenced against
mastoids (M1 and M2) and a ground electrode was attached close to Fz. The impedance
of the electrodes was kept below 20 kΩ. Two pairs of additional electrodes (VEOG and
HEOG) were used. VEOG were placed above and below the right eye to record vertical eye
movements, while HEOG were placed approximately 2 cm from the right and left outer
canthi to record horizontal eye movements. Data were recorded with a sampling rate of
2048 Hz.

2.3. ARSQ

The Lithuanian version of ARSQ 2.0 was used [21]. The ARSQ is a self-report question-
naire that aims to summarize the retrospective subjective experience during a recording
session. It contains 30 statements on thoughts and feelings that participants may experi-
ence during a resting-period. Each statement is rated on Likert-type scale ranging from 1
(completely disagree) to 5 (completely agree). The ARSQ covers ten different domains of
resting-state cognition: Discontinuity of Mind (DoM), Theory of Mind (ToM), Self, Planning,
Sleepiness, Comfort, Somatic Awareness (SA), Health Concern (HC), Visual Thought (Vis)
and Verbal Thought (VT). Each domain was evaluated with three statements. The scores of
each ARSQ dimension were calculated by taking the mean value of the three statements.

2.4. EEG Processing

The offline EEG data processing was conducted in a MATLAB (The Mathworks,
Natick, MA, USA) environment using an EEGLAB toolbox [42]. The 50 Hz power line
noise was removed using Thomas F-statistics implemented in the CleanLine plugin for
EEGLAB [43]. EEG data were submitted to an ICA, and components with spatial and
temporal characteristics of horizontal and vertical eyes movements and cardiac pulse were
used to construct individual spatial filters to suppress these artefacts [44,45]. Channels
with excessive artefacts were manually rejected and reconstructed using a 3D spherical
spline method [46]. EEG recordings were down-sampled to 1000 Hz. Data were segmented
into artefact-free, non-overlapping, 2 s epochs that were baselined over the epoch duration
and decomposed using fast Fourier transform (FFT) from DC to 30 Hz with a frequency
resolution of 0.5 Hz and then averaged.

2.5. Frequency Principal Component Analysis (f-PCA)

f-PCA analysis was conducted using an EP Toolkit [47]. A covariance matrix with
unrestricted component extraction and Promax rotation was used. The cases to variables
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ratio was 229.7 (14012 cases: 226 participants × 62 electrodes; 61 variables: 0–30 Hz in 0.5 Hz
steps). Factors with more than 3 percent of explained variance were included for further
analysis, and the remaining components were excluded. To ensure a sufficient signal-
to-noise ratio, electrodes with three maximum values of the component were averaged
together for each distinct factor.

2.6. Source Localization

Standardized low-resolution electromagnetic tomography (sLORETA) [48,49] was
used to determine the intracortical distribution of the electrical activity determined for
f-PCs that were significantly associated with rating scores of ARSQ domains (these were set
as external independent variables). The Montreal Neurologic Institute average MRI brain
(MNI152) [50] was used as a realistic head model where the solution space was restricted
to the cortical grey matter, corresponding to 6239 voxels at 5 × 5 × 5 mm spatial resolution.
Statistical nonparametric mapping (SnMP) with 5000 permutations was used to determine
the significant threshold value for voxel activation [51].

2.7. Statistical Analysis

Statistical analysis was performed using JASP statistical software [52,53]. The mean for
each component was calculated by averaging three electrodes with the maximum values.
The scores of each questionnaire domain were calculated by taking the mean value of the
three statements. To evaluate the relationship between f-PCs and ARSQ domains, we used
Bayesian Pearson’s correlation coefficients. Additionally, intraclass Bayesian Pearson’s
correlation coefficients were calculated between all ASRQ domains. The Bayesian approach
estimates the probability of a correlation for a given pair and produces a Bayes factor (BF).
Bayes factors allow three different types of conclusions: evidence for alternative hypothesis
(conventional significant threshold of BF > 3), evidence for null hypothesis (conventional
significant threshold of BF > 1/3) and insensitive evidence (1/3 < BF < 3). The Bayesian
approach does not require correction for multiple testing [54–57].

To determine the possible outliers in both f-PC and ARSQ values, a custom-written
MATLAB function for multidimensional scaling (MDS) was used. MDS is a method
that allows the downscaling and visualization of similarities among datasets in a low-
dimensional space where the distances between datapoints optimally represent the original
similarities [58,59]. MDS produced the x and y coordinates for datapoints, which were used
to calculate the pairwise Euclidean distances between them. Next, the MATLAB built-in
function isoutlier with default settings was used. The datapoints were considered outliers
if they were more than three scaled median absolute deviations (MADs) away from the
median. MDS was applied separately for f-PCs and ARSQ scores.

3. Results

Based on the MDS plot and the MAD, the final set of 226 participants did not contain
any outliers either for f-PCs or for ARSQ ratings.

3.1. f-PCA Outcomes

Six factors that explained more than three percentages of variance each were used
for further analysis. Together, these six factors accounted for 82.58% of the variance. The
factors were ordered according to explained variance and labeled with the first letter of the
corresponding EEG frequency range. There was one factor in the delta frequency range,
peaking at 0.5 Hz with fronto-central activity (D1); one at the theta range, peaking at 5.5 Hz
with frontal midline activity (T1); three components in the alpha range, peaking at 9 Hz
(A1), 10.5 Hz (A2), and 11.5 Hz (A3), respectively, with occipital activity; and one factor in
the beta frequency range, peaking at 17 Hz with occipital activity (B1). The f-PCA outcomes
are depicted in Figure 1. The top part shows the loading scores of each factor, describing
how much each variable contributed to a particular principal component; the middle part
presents individual labels, factor numbers, peak frequencies and explained variance as
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percentage. The bottom part displays the topographies of each component. Three electrodes
with the maximum values, which were averaged together for each component, are marked
in black.
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marked with black dots.

3.2. Subjective Reports

The intraclass Bayesian Pearson’s correlation coefficients for the ARSQ dimensions
are displayed in Figure 2A. There were, in total, sixteen positive intraclass correlations
between the ARSQ domains, while only HC and Comfort displayed significantly negative
relationships (r = −0.203, BF10 = 8.772). DoM correlated with all but the Comfort and SA
domains, while SA did not display any relationship with other ARSQ domains. The mean
scores and standard deviations for the scores of each ARSQ dimension are summarized in
a spider plot (Figure 2B).
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Figure 2. Intraclass Bayesian Pearson’s correlation coefficient between ARSQ domains. **** BF10 > 100,
*** 100 > BF10 > 30, ** 30 > BF10 > 10, and * 10 > BF10 > 3 (A). Spider plot of mean scores and standard
deviations (dark red lines) for each ARSQ domain (B). Scatter plots for significant interaction between
activations and ARSQ domains (C). Intracortical activity estimated with sLORETA for T1 and ARSQ
domain of Sleepiness (D).

3.3. Relationship between Data-Driven EEG Components and Subjective Experiences

Out of sixty possible correlations (ten ARSQ domains x six factors) only two interac-
tions were statistically significant (BF10 > 3). T1, peaking at 5.5 Hz, was positively correlated
with the ARSQ domain of Sleepiness (r = 0.200, BF10 = 7.676). A1, peaking at 9 Hz, was
positively associated with the domain of Comfort (r = 0.198, BF10 = 7.115) (Figure 2C). The
Pearson’s correlation coefficient and BFs for correlations between the f-PC loading scores
and ARSQ scores are summarized in Table 1.
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Table 1. Bayesian Pearson’s correlation coefficient between six data-driven EEG components and
ARSQ domains.

ARSQ
Factors

A1 A2 D1 A3 T1 B1

DoM
r −0.081 −0.47 −0.008 0.009 0.059 −0.053

BF10 0.173 0.107 0.084 0.084 0.122 0.114

ToM
r 0.044 0.045 0.071 0.007 0.086 0.046

BF10 0.103 0.105 0.145 0.084 0.191 0.105

Self
r −0.003 −0.062 −0.104 0.01 −0.018 0.062

BF10 0.083 0.127 0.279 0.084 0.086 0.128

Planning r −0.018 −0.018 −0.017 −0.062 −0.048 −0.105
BF10 0.086 0.086 0.086 0.128 0.107 0.288

Sleepiness r −0.040 −0.004 0.031 −0.052 0.200 * −0.034
BF10 0.099 0.083 0.093 0.112 7.676 0.095

Comfort
r 0.198 * 0.138 0.078 −0.044 0.131 0.082

BF10 7.115 0.713 0.164 0.104 0.573 0.176

SA
r 0.027 −0.012 0.025 0.067 −0.089 −0.009

BF10 0.09 0.085 0.089 0.137 0.201 0.084

HC
r −0.008 −0.125 −0.086 −0.069 −0.025 −0.076

BF10 0.084 0.475 0.189 0.142 0.089 0.158

Vis
r 0.103 0.032 −0.011 −0.116 0.128 0.1

BF10 0.272 0.093 0.084 0.371 0.521 0.253

VT
r −0.066 −0.070 −0.090 −0.044 0.02 −0.058

BF10 0.135 0.145 0.206 0.103 0.087 0.121

* marks significant interactions.

3.4. sLORETA Results

The loadings of only two f-PCs were significantly correlated with two distinct individ-
ual ARSQ ratings. We constrained an sLORETA analysis for the A1 × Comfort and T1 ×
Sleepiness rating scores only.

The sLORETA analysis resulted in a significant correlation for T1 × Sleepiness
(r = 0.247, p < 0.05), with the main activity evident in the limbic lobe, the anterior cin-
gulate gyrus, and Brodmann areas (BAs) 24 and 23 (Figure 2D). The A1 × Comfort analysis
failed to reach a significant threshold (r = 0.207, p > 0.05).

4. Discussion

The relationship between subjective experience and brain activity at rest is not well
understood. An increasing number of studies have aimed at bridging the gap between objec-
tively defined physiological signals and subjective experience during resting-state recording
sessions. In this study, we focused on the association between EEG data-driven frequency
components and subjective experiences measured with the Amsterdam Resting-State Ques-
tionnaire. The ARSQ appeared to be a useful tool to relate biological signals collected over
the resting-state session with participants’ subjective experiences and emotions. Several
studies using different brain-imaging modalities and applying different analysis methods
have reported associations with the ARSQ domains (DoM [24,26], ToM [20], Self [25,26],
Planning [18,22], Sleepiness [16,24], Comfort [18,24,25], Somatic Awareness [18,21,25,26],
Visual Thought [24], and Verbal Thought [26]). However, none of the studies has imple-
mented an f-PCA approach for EEG quantification.

As an outcome of f-PCA, six factors were retained: three components in the alpha
range and one each in the delta, theta, and beta ranges. This is comparable with other
resting-state f-PCA studies with minor differences regarding topographical display and the
variances explained [31,38,40]. The f-PCA method has an advantage over traditional EEG
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spectral analysis, as it evaluates naturally occurring frequency components that are not
affected or constrained by somewhat arbitrary, chosen EEG frequency band ranges [6,35],
and it is completely data-driven.

Based on the previous observations, we expected several associations involving alpha
and theta components to be present. The EEG data were mainly driven by the alpha activity;
the retained three components peaking at 9, 10.5, and 11.5 Hz together explained 41.82%
of the total variance. These results are in line with the results reported in other f-PCA
studies, where between two [60] to five [31] components in the alpha range have been
extracted, explaining from 1.4% (A2 component peaking at 9.5 Hz [40]) to 50% (alpha/theta
component peaking at 9 Hz [37]) of the variance. Despite differences in the peak frequencies
and explained variances, alpha-range components are topographically similar between the
studies. In the current study, the A1, A2, and A3 components showed spatial correlation
values ranging from 0.92 to 0.98. Functionally, alpha components were linked to the state
of the subject’s arousal earlier [38]; thus, the relationship of alpha components to Sleepiness
scores could be expected. However, although the retained alpha components explained
almost half of the data, we observed a positive association only between A1 and the
subjective ratings for the Comfort domain (r = 0.198, BF10 = 7.115) (Figure 2C). The Comfort
domain was characterized by questions such as “I felt comfortable”, “I felt happy”, and “I
felt relaxed”. Previously, this domain has been associated with the temporal characteristics
of broadband EEG microstates C, E, G [25], and D [18]. EEG microstates are mainly driven
by alpha activity [61]. Thus, the results, although unexpected, partially supported earlier
observations. Nevertheless, the sLORETA analysis attempting to localize the relationship
failed to reach a significance level for the A1 x Comfort analysis (r = 0.207, p < 0.05).

A single component in the theta range of T1 (peaking at 5.5 Hz) had pronounced
midline frontal activity and was positively correlated with the subjective ratings for the
Sleepiness domain (r = 0.200, BF10 = 7.676), suggesting more theta observed in subjects who
reported more sleepiness. This result is in accordance with an initial report by Diaz et al. [16]
evaluating the ARSQ’s relationship to physiological manifestations. The authors reported a
positive correlation between the domain of Sleepiness and sustained midline theta activity.
Furthermore, a positive correlation of frontal midline theta power (4–8 Hz) with subjective
ratings on the Karolinska sleepiness scale was reported [62] and a negative correlation
between frontal theta activity and activation of the default mode network (DMN) was
shown [63]. The activity in the DMN is related both to the processing of personally
significant information, self-reflection, and self-referential internal mentation [64] and to
stimulus-independent thoughts [65] that are more likely to occur during a resting state.
Previously, activity in the DMN was shown to positively correlate with Sleepiness [24].
Similarly to Stoffers et al. [24], we observed decisive evidence for a positive correlation
between the ARSQ domains of DoM (referring to ’I had busy thoughts’, ‘I had rapidly
switching thoughts’, and ‘I had difficulty holding on to my thoughts’) and Sleepiness
(r = 0.251, BF10 = 113.972), suggesting that the more drowsiness subjects experienced, the
more troubles they had in holding on to their thoughts. We attempted to localize the
association between the theta component and Sleepiness and performed inverse modeling
using sLORETA. The association emerged for activity in the limbic lobe and the anterior
cingulate cortex (ACC) (Figure 2D). This result is compatible with reports on the localization
of theta activity. Scheeringa et al. [63] reported theta activity (2–9 Hz) that originated in
the medial prefrontal cortex and ACC. Smith et al. [60] localized sources of the theta
component, peaking at 5 Hz, in the premotor cortex, including the dorsal ACC. Nishida
et al. [66] showed theta (5–7 Hz) activation in the ACC during wakefulness and REM sleep,
but not in the slow-wave sleep stage. Thus, the positive correlation between individual
ratings for Sleepiness and the activity in the limbic lobe and ACC is in line with results
reported in the literature.

No associations were observed with components in the delta and beta frequency
ranges, although Portnova et al. [22] previously reported a negative correlation between
the power spectrum density from 2–3 Hz and Planning. However, it should be noted
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that both the extracted D1 (peaking at 0.5 Hz) and B1 (peaking at 17 Hz) components
were somewhat different from those reported previously: D1 resembled activity over
the left frontal area, peaking at the FP1, AF7, and F7 electrodes, while reports in the
literature have observed maximum activities in the central, fronto-central, and right frontal
areas [40,41,67]. B1 had a right occipital activation with maximum values at the PO4, PO6,
and PO8 electrodes that is in line with some reports [41,67] but contradicts others that
showed a fronto-central topographical display [31,40]. The nature of these discrepancies
is not clear. To our knowledge, our study performed an f-PCA analysis for the largest
sample of young, healthy adults so far, having enough power to add to the robustness of
the results.

5. Conclusions

In this study, we showed that (1) individual loadings of the frontal midline theta
component peaking at 5.5 Hz positively correlated with subjectively experienced Sleepiness
measured with the ARSQ, and (2) the individual loadings on the alpha component peaking
at 9 Hz positively correlated with the subjective ratings of the Comfort domain. The
observed correlations are partly in line with previously reported associations in both EEG
and fMRI studies, pointing to the relevance of the assessment of spontaneous thoughts
occurring during a resting state for understanding the individual intrinsic brain activity
reflected in frequency principal components.
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