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Simple Summary: Electrical activity in the brain dynamically changes throughout the day. Abnor-
malities in brain activity have been associated with various brain disorders, including Alzheimer’s
disease (AD). While brain disorders stem from complex pathological processes, resulting in abnor-
malities in neural activity and cognitive deficits, recent studies have demonstrated that controlling
brain activity can modify disease pathologies as well as cognitive functions. In particular, studies in
mouse models of AD have provided promising results regarding the amelioration of AD pathology
by invasive and non-invasive brain stimulations. In this review article, by focusing on AD, we
provide an overview of this emerging field. We summarise how brain activity changes in humans
and mouse models, and how different artificial manipulations of brain activity can modify AD
pathology. Although further investigations are essential, this research direction will provide insight
into non-pharmacological intervention strategies for dementia.

Abstract: Brain state varies from moment to moment. While brain state can be defined by ongoing
neuronal population activity, such as neuronal oscillations, this is tightly coupled with certain be-
havioural or vigilant states. In recent decades, abnormalities in brain state have been recognised
as biomarkers of various brain diseases and disorders. Intriguingly, accumulating evidence also
demonstrates mutual interactions between brain states and disease pathologies: while abnormalities
in brain state arise during disease progression, manipulations of brain state can modify disease
pathology, suggesting a therapeutic potential. In this review, by focusing on Alzheimer’s disease
(AD), the most common form of dementia, we provide an overview of how brain states change
in AD patients and mouse models, and how controlling brain states can modify AD pathology.
Specifically, we summarise the relationship between AD and changes in gamma and slow oscilla-
tions. As pathological changes in these oscillations correlate with AD pathology, manipulations
of either gamma or slow oscillations can modify AD pathology in mouse models. We argue that
neuromodulation approaches to target brain states are a promising non-pharmacological intervention
for neurodegenerative diseases.

Keywords: dementia; Alzheimer’s disease; neuromodulation; neural oscillations; optogenetics

1. Introduction

The brain is never at rest. The activity state of the brain, called the brain state,
varies from moment to moment. While brain state can be defined as a collective action
of the neural population at a given moment, it spans over multiple spatiotemporal scales
(Figure 1) [1–3]. Hans Berger first described the 8–12 Hz rhythm, called alpha waves, in
a human scalp electroencephalogram (EEG) recording [4]. Since then, intensive research
has discovered a wide range of activity patterns or brain states (Figure 1A). For example,
gamma (30–90 Hz) oscillations are a fast activity state and appear locally, compared to
slower frequency oscillations. Gamma oscillations are related to various cognitive functions,
such as attention, conscious perception and memory [5–12]. The sleep–wake cycle can be
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considered as slower state changes and consists of multiple neural events and oscillations
(Figure 1). Rapid eye movement (REM) sleep is characterised by theta oscillations and
ponto-geniculo-occipital (PGO) waves, whereas non-REM (NREM) sleep is characterised by
slow oscillations, sleep spindles, and sharp wave-ripples [13–21] (Figure 1B). These sleep-
related neural events or oscillations have also been implicated in various homeostatic and
cognitive functions, including waste clearance [22,23] and memory consolidation [24–29].
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Given the prominence of these neural oscillations and events, it is not surprising that
consistent associations can be seen between various brain disorders and abnormalities in
neural oscillations or brain states [30–34]. For example, abnormalities in gamma oscilla-
tions have been recognised as a neurophysiological marker for various neuropsychiatric
disorders and neurodegenerative diseases, such as schizophrenia [34], autism spectrum
disorder (ASD) [35,36], depression [37,38], and Alzheimer’s disease (AD) [31]: more specif-
ically, a reduction in sensory-evoked gamma power can be seen in schizophrenia and ASD
patients, whereas varied changes in gamma oscillations have been reported in depressive
disorders and AD patients [34,36,38–41]. Additionally, abnormalities in sleep patterns
and sleep-related oscillations have been linked with depression [42], schizophrenia [43,44],
addiction [45] and AD [46–49].

Although it remains to be determined how abnormalities in brain states can be causally
linked to disease pathogenesis, an emerging approach, called “neuromodulation”, aims
to alter neural activity to modify disease state [50]. For example, while deep brain stim-
ulation (DBS) is an invasive approach, chronically implanting a depth electrode into the
patient brain to electrically stimulate a target brain region, it can alleviate the symptoms
of Parkinson’s disease [51,52] and has also been examined in treatment-resistant depres-
sion [53,54], obsessive-compulsive disorder [55,56] and AD [57,58]. In addition to invasive
treatment, non-invasive neuromodulation approaches, such as transcranial magnetic stimu-
lation (TMS), have been explored in various brain disorders, such as schizophrenia [59–61],
depression [62], addiction [63,64], and AD [65–67]. Despite many clinical trials being
conducted, it remains unclear how neuromodulation approaches can act on neural circuits
to result in cellular and molecular responses that modify disease state. To tackle this chal-
lenge, preclinical studies in animal models could offer insight into better neuromodulation
approaches. Thus, it is crucial to understand how brain state is regulated, how brain state
is changed during disease pathogenesis, and how neuromodulation approaches can alter
neural activity, resulting in a modification of disease state.
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In this literature review, we focus on AD, the most common form of dementia. Al-
though AD is one of the most intensively studied neurodegenerative diseases [68–78],
intervention and treatment options remain limited. In AD, amyloid plaques and tauopathy
are major pathological hallmarks, with other pathological features including inflammation
and lipid metabolism [68,70,71,73–75,77–80]. Although molecules associated with these
features are promising targets for pharmacological treatments [81–85], neuromodulation-
based interventions are now being considered, given the multifaceted pathologies of AD.

Abnormalities in EEG patterns have been recognised since as early as the 1930s [30].
Since then, EEG abnormalities have been described in terms of the following three fea-
tures [31]: (1) slower neural oscillations, (2) decreased complexity of EEG, and (3) reduced
degrees of functional connectivity. Hence, these hallmarks of EEG abnormalities can
be recognised as either a biomarker of or target for neuromodulation-based interven-
tion. Indeed, accumulating evidence indicates that neuromodulation approaches have
the potential to modify Alzheimer’s disease states [47,86]. In particular, targeting gamma
oscillations and slow (<1 Hz) oscillations has provided encouraging results in AD mouse
models [87–92]. Since these oscillations have been well characterised with respect to
their induction mechanisms, gamma and slow oscillations would make good targets for
neuromodulation-based treatment.

In this review, we first summarise the mechanisms of these two neural oscillations,
gamma and slow, followed by a brief overview of the relationship between these oscillations
and AD in both human patients and mouse models. Then, we review recent animal studies
that examined the effect of invasive and non-invasive neuromodulation approaches on
AD pathology. Finally, we discuss future directions in this field. Readers may also refer to
other recent reviews relevant to this field [33,46–49,67,86,93].

2. Gamma Oscillations and AD

Jasper and his colleague first described gamma waves [94]. The investigation of
gamma (30–90 Hz) oscillations has gained popularity following a series of studies by
Freeman [95,96] and by Singer and his colleagues [9]. Gamma oscillations have been
observed across many brain regions, not just in the neocortex, but also in the entorhi-
nal cortex [97–99], amygdala [100], hippocampus [101–103], striatum [104,105], olfactory
bulb [106,107], basal forebrain [108,109] and developing thalamus [110]. They have been
associated with various cognitive functions, including attentional selection [8,111], working
memory [12,112], perceptual binding [6,9], and memory encoding [111,113]. Abnormalities
in gamma oscillations have links to various neuropsychiatric disorders [34] and neurode-
generative diseases [32]. Here, after describing the induction mechanisms of gamma
oscillations, we summarise the relationship between gamma oscillations and AD in both
humans and mouse models. Then, we discuss emerging therapeutic approaches based on
gamma oscillations.

2.1. Mechanisms of Gamma Oscillations

The induction mechanisms of gamma oscillations in cortical circuits have been inves-
tigated by a wide range of approaches, including computational models [5,103,114–117],
brain slice experiments [118,119] and in vivo optogenetic experiments [120,121]. Com-
putational studies have suggested several mechanisms that are potentially involved in
generating gamma oscillations (Figure 2) [5,114,122]. In the interneuron gamma (ING)
mechanism (Figure 2A), mutual inhibition between GABAergic neurons is sufficient to
generate gamma oscillations. Two distinct regimes can be considered: in the high-firing,
noise-free condition, individual GABAergic neurons elicit spikes at around 40 Hz. Mutual
inhibition via GABAA receptors quickly leads to synchronous firing [103]. In the more
realistic, noisy condition, individual GABAergic neurons fire sparsely and stochastically.
When the inhibitory feedback is strong enough, gamma oscillations arise. Thus, gamma
oscillations are an emerging property of the mutual inhibition network. In both conditions,
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GABAA receptor-mediated inhibition plays a role in the generation of gamma oscillations
in the absence of excitatory inputs [103,117].
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range [120,121]. Although these results apparently support the ING mechanism, the de-
termination of a precise mechanism is complicated. Although the computational models 
described above predict how the depolarization of excitatory or inhibitory neurons could 
affect the oscillations, they do not predict how each network configuration could respond 
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Figure 2. Mechanisms of gamma oscillations. (A) Interneuron gamma (ING) mechanism. Gamma oscillations arise from
mutually connected GABAergic neurons. Two regimes can be considered: in one regime, each interneuron fires rhythmically
with a frequency determined by the kinetics of the GABAergic feedback (~40 Hz). In the second regime, although each
interneuron sparsely and stochastically fires at an average rate below 40 Hz, recurrent inhibitory interactions lead to gamma
oscillations. (B) Pyramidal-interneuron network gamma (PING) mechanism. Pyramidal cells first activate interneurons via
AMPA receptors (AMPARs). This leads to recurrent inhibition via GABAA receptors (GABAARs), resulting in rhythmic
firing of excitatory and inhibitory populations at the gamma range. (C) Gamma oscillations are inherited by oscillatory
activity from upstream areas.

In the pyramidal-interneuron gamma (PING) mechanism (Figure 2B), the alternation
between the fast excitation and delayed feedback inhibition can generate gamma oscilla-
tions [5,107,114,122,123]. The fast excitation is mediated by AMPA receptors, whereas the
feedback inhibition is mediated by GABAA receptors. The third, simple mechanism is the
inheritance of gamma rhythm from upstream areas (Figure 2C) [124]. In this mechanism,
the downstream network can reliably and precisely respond to rhythmic inputs from their
upstream. In addition to these, other mechanisms can also be taken into consideration,
such as neuromodulators [125,126] and pace-making chattering cells [127].

Experimentally, optogenetic activation of cortical parvalbumin-positive (PV+) GABAer-
gic neurons is sufficient to produce gamma oscillations, whereas αCaMKII+ neurons
(pyramidal neurons) cannot entrain optogenetic stimulation at the gamma-frequency
range [120,121]. Although these results apparently support the ING mechanism, the de-
termination of a precise mechanism is complicated. Although the computational models
described above predict how the depolarization of excitatory or inhibitory neurons could
affect the oscillations, they do not predict how each network configuration could respond
to periodic optogenetic stimulations. Rather, models incorporating physiological data sug-
gested that these optogenetic experiments cannot conclusively distinguish between the
ING and PING mechanisms, since the PING model can explain the experimental obser-
vations [114]. Thus, further studies with different stimulation protocols are required to
determine the mechanisms of gamma oscillations. As gamma oscillations may have ther-
apeutic potential for neurodegenerative diseases, it is important to investigate whether
different induction mechanisms of gamma oscillations could lead to distinct molecular and
cellular responses and what types of induction mechanisms have beneficial or detrimental
effects on AD pathology.

2.2. Gamma Oscillations and AD in Humans

While gamma oscillations in human subjects have been assessed by either EEG or
magnetoencephalography (MEG), the relationship between AD pathology and changes in
gamma oscillations is inconclusive: a number of studies reported a reduction in gamma
power or coherence across cortical regions in AD patients [40,128,129], whereas some
reported opposite results [39,41,130–132]. This inconsistency may stem from various
experimental parameters. For example, gamma oscillations were assessed in an eye-
closed, resting state condition [40,41,131,133,134] or during sensory stimulus presenta-
tion [39,41,129,130,132]. As expected, cortical regions which showed significant effects also
varied depending on conditions and studies. Additionally, while many studies compared
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gamma oscillations between AD patients and healthy subjects, several studies also com-
pared AD and mild-cognitive impairment (MCI) patients [41,130,131,134]. A consistent
approach, recruiting a large number of subjects, would be ideal to address this issue.

A recent study of >300 individuals provides valuable insight into changes in gamma
oscillations during AD pathogenesis [135]. This study revealed the inverted U-shape
relationship between amyloid depositions and gamma power (Figure 3): as the amyloid
deposition reaches a supra-threshold level, gamma power increases. On the other hand,
as the amyloid deposition increases further to an enhanced pathological state, gamma
power decreases. These results imply a compensatory mechanism at an early phase of
AD pathogenesis, which may be overwhelmed by a higher amyloid load, leading to a
breakdown of neural circuits [135–138]. These results may also be reconciled with the
contradictory observations mentioned above, as changes in gamma oscillations may vary
depending on the stage of pathogenesis. In the future, it is important to correlate changes
in gamma oscillations with AD pathology in large-scale clinical studies. In addition, it is
crucial to find out whether animal models can replicate this inverted U-shape relationship to
investigate the underlying mechanisms at the molecular, cellular and neural circuit levels.
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pus, as mice lacking APP exhibit a reduction in theta-gamma coupling without statisti-
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Figure 3. Inverted U-shape relationship between amyloid load and gamma power. This inverted
U-shape relationship is evident in the neurodegeneration-positive group assessed by 18F-FDG PET.
A+ and A−, amyloid-positive and -negative groups based on 18F-florbetapir PET, respectively. Please
note that although these two groups were dichotomized with a threshold (red dotted line), amyloid
load is a continuous value. Modified from Gaubert et al. (2019).

2.3. Gamma Oscillations and AD in Mouse Models

A reduction in gamma power is consistently observed in various mouse models,
including APP-PS1 [139], J20 [140,141], 5xFAD [89], CRND8 [142,143], APOE4 [144,145]
and tau models [146] (Table 1). Multiple brain regions have been investigated, such as the
hippocampus [89,143,145], entorhinal cortex [139] and prefrontal cortex [140,141]. In the
hippocampus, abnormalities in the coupling of gamma oscillations with sharp wave-ripples
or theta oscillations have been consistently observed [89,142,145]. While these results imply
that the overexpression of amyloid-β impairs hippocampal ensembles, amyloid precursor
protein (APP) also plays a critical role in theta-gamma coupling in the hippocampus,
as mice lacking APP exhibit a reduction in theta-gamma coupling without statistically
significant changes in gamma and theta power [147].

Additionally, an association between deficits in PV+ neurons and abnormal gamma
oscillations has been shown [140,141]. More specifically, this is caused by a reduction in
voltage-gated sodium channel subunit Nav1.1 expression in PV+ neurons of J20 mice, with
experimental studies illustrating that genetic modifications to increase Nav1.1 expression
lead to a restoration of gamma oscillations and a beneficial effect on cognitive decline [141].
Given the mechanisms of gamma oscillations described above (Figure 2), it is important
to examine how the deficits in PV+ neurons can affect activity in pyramidal cells and
interactions between PV+ and pyramidal neurons.
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Table 1. Gamma oscillations in AD mouse models.

Mouse Model Age (Months) Sex Preparation Frequency
Band (Hz) Changes in γ Oscillations Reference

APP/PS1 4–5 NA EC slices 20–60 Reduced γ frequency in LEC
No effect in MEC [139]

J20
4–7 M/F in vivo cEEG 20–80 Reduced γ power [140]

7–8 M/F in vivo cEEG 30–90 Reduced γ power [141]

5xFAD 3 M in vivo LFP
in CA1 20–50 Reduced γ power

during SWRs [89]

TgCRND8
1 NA HC slices

θ: 3–12
low γ: 25–85

high γ: 120–250

No change in γ power
Disrupted θ–γ coupling [142]

1 M in vivo HC LFP low γ: 25–45
high γ: 60–100 Reduced γ power [143]

APOE4
5–17 F in vivo HC LFP 30–50 Reduced γ power [144]

4–5 F in vivo HC LFP 30–50 Reduced γ power
during SWRs [145]

3R tau
overexpression 7 M HC slices 50–90 Reduced γ power and

peak frequency [146]

cEEG, cortical EEG. EC, entorhinal cortex. HC, hippocampus. LFP, local field potential. LEC, lateral EC. MEC, medial EC. SWR,
sharp wave-ripple.

Intriguingly, a subset of interneurons (such as PV+, somatostatin-positive, and cholecy
stokinin-positive GABAergic neurons) are vulnerable to amyloid pathology [140,141,148],
whereas pyramidal cells are more vulnerable to tauopathy [149]. These results suggest
selective vulnerability depending on AD pathogenesis and pathologies. As efforts have
been made to comprehensively characterise molecular mechanisms of such selective vul-
nerability in both humans and mouse models [149–153], deficits at the neural circuit level
will also become clear in coming years.

Compared to human studies, the following aspects have been less explored in mouse
models: firstly, although several studies have investigated multiple age points to show mod-
ifications in gamma oscillations during AD pathogenesis [136,145,154,155], none of them
have reported the inverted U-shape change, that is, a transient increase in gamma power
at an early phase of AD pathogenesis, as reported in a human clinical study (Figure 3).
A longitudinal assessment of mouse models correlating with amyloid burden and other
pathological features may address this issue. Secondly, commonly used mouse models
are familial AD models. Thus, the relation to late-onset AD (LOAD) remains unclear. A
recent effort to develop LOAD mouse models [156] may bridge the gap between human
and animal studies. Additionally, the effect of tauopathy in gamma oscillations needs to be
explored further. Finally, the electrophysiological approach is markedly different between
human and mouse studies. For example, very few studies in mice have assessed sensory-
evoked, task event-related or sensory steady-state responses. Additionally, cortex-wide
gamma coherence has not been assessed in mice, in contrast to human EEG and MEG
studies. Filling these methodological gaps will be crucial in the future.

2.4. Neuromodulation of Gamma Oscillations for AD

As summarised above, it is clear that a reduction in gamma power is associated
with AD pathology, at least in mouse models. Leveraging this knowledge, various inva-
sive and non-invasive neuromodulation approaches have been adopted to modify AD
pathology (Table 2) [88–91,157–160]. For example, Tsai and her colleagues have elegantly
demonstrated that both invasive and non-invasive gamma stimulations can ameliorate AD
pathology [86,89–91]: optogenetic induction of gamma oscillations in the hippocampus
can reduce amyloid load by activating microglia [89]. More surprisingly, non-invasive
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40 Hz sensory stimulation (either auditory or visual) has similar effects [89,90]. The same
approach can also reduce tau phosphorylation and seeding in the T301S model [89,90].
These effects are associated with modifications to microglia-associated transcripts, as well
as synaptic signaling and plasticity-related proteins [89,91]. Although the effect of this
non-invasive approach remains to be confirmed in humans, multisensory 40 Hz stimulation
can affect wider brain regions, including hippocampal areas, as well as sensory cortices [90].
Another group showed that optogenetic stimulation of PV+ neurons in the medial septum
can induce gamma oscillations in the hippocampus, resulting in an improvement in cog-
nitive function [88]. Although it remains to be determined whether this approach could
also reduce amyloid load in the hippocampus, these studies have illustrated the potential
for certain induction mechanisms of gamma oscillations to modify AD pathology in a
beneficial manner. However, further investigation of these is required before its potential
as a non-pharmaceutical therapy is considered.

Table 2. Summary of invasive and non-invasive neuromodulation of gamma oscillations in AD mouse models.

Induction
Method

Stimulation
Protocol Duration Model Sex Age

(Months) Modulated AD Phenotype Reference

In
va

si
ve

Optogenetic

1 ms pulses,
40 Hz, CA1 1 h

5xFAD::PV-Cre,
AAV5-EF1α-

DIO-ChR2-eYFP
M 3 Reduced Aβ

Reduced inflammation [89]

12 ms pulses,
40 Hz, Medial

Septum
10 min

PVJ20, AAVdj-
EF1α-DIO-

ChETA-eYFP
M/F NA Improved spatial memory [88]

40 Hz, Basal
Forebrain

1 h/d for
3 days

5xFAD::PV-
Cre::Ai32 M/F 4–6 Increased Aβ [157]

N
on

-I
nv

as
iv

e

Visual

12.5 ms on,
12.5 ms off,

40 Hz flicker

1 h/day for
7 days

5xFAD M 6 Reduced Aβ

[89]APP/PS1 M/F 5 Reduced Aβ

TauP301S M 4 Reduced tauopathy

40 Hz flicker 1 h/day for
30 days APP/PS1 F 8

Reduced Aβ
Reduced tauopathy

Increased sleep regulation
[160]

12.5 ms on,
12.5 ms off,

40 Hz flicker

1 h/day for
22 days TauP301S M 7.5–8

Reduced neuronal damage
Reduced inflammation

Reduced tauopathy
Improved spatial memory [91]

1 h/day for 6
weeks CK-p25 M/F 6–9

Reduced neuronal damage
Reduced inflammation

Improved spatial memory

Auditory
1 ms 10 kHz
tones, 40 Hz,

60 dB

1 h/day for
7 days

5xFAD NA 6
Reduced Aβ

Reduced inflammation
Improved memory

[90]
APP/PS1 NA 6–9 Reduced Aβ

Reduced inflammation

TauP301S NA 2 Reduced tauopathy

Combined
Auditory

and Visual
10 s on, 10 s off 1 h/day for

7 days 5xFAD NA 6 Reduced Aβ
Reduced inflammation

Visual and
Exercise

40 Hz light
flicker and
30–50 min

exercise

Daily, 6 days
a week for
12 weeks

3xTg M 12–15

Reduced Aβ
Reduced tauopathy

Reduced neuronal damage
Improved spatial memory

[159]

Transcranial
Focused

Ultrasound

400 µs pulses, 5 s
on 5 s off, 40 Hz,
Hippocampus

1 h/day for
5 days 5xFAD M 6 Increased microglia/Aβ

Co-localisation [158]

Interestingly, a recent alternative optogenetic approach to induce cortical gamma os-
cillations showed opposing effects on AD pathology [157]: although optogenetic activation
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of basal forebrain PV+ neurons could induce cortical gamma oscillations, amyloid load
increased in the medial prefrontal cortex and septum. As basal forebrain PV+ neurons
preferentially innervate cortical GABAergic neurons [161], the optogenetic activation of
basal forebrain PV+ neurons could suppress cortical PV+ neurons, rather than activating
them. Thus, the induction mechanism of cortical gamma oscillations in this study differs
from that of Iaccarino et al. (2016) [89]. These results suggest that the beneficial effect of
gamma oscillations may depend on the induction method, rather than the frequency of
local field potentials itself. As there are multiple mechanisms to induce gamma oscillations
(Figure 2), it is important to investigate how different approaches can activate different
components of neural circuits as well as non-neuronal cells. This type of effort will refine
this therapeutic option. As several parameters (duration, frequency, age, etc.) must be
explored, real-time monitoring of AD pathology in vivo [162] will accelerate this field.

Regarding clinical applications, since a current major limitation is that most studies
have focused on amyloid pathology (Table 2), it is important to investigate how the induc-
tion of gamma oscillations affects other pathological features, especially tauopathy [89,90].
In addition, because changes in gamma oscillations in humans can vary depending on
the stage of AD pathogenesis [135], it is also critical to determine whether this neuro-
modulation approach could be beneficial even for patients who exhibit higher gamma
power. Again, developing and examining better animal models will benefit this exciting
research direction.

3. Slow Oscillations and AD

Slow (<1 Hz) oscillations are another well-characterised type of neural oscillation, since
the series of landmark studies by Steriade and colleagues [20,163,164]. Slow oscillations are
comprised of cycles of global silence (DOWN state) and synchronous firing (UP state) across
neuronal populations [2,163,165–167]. When they appear during NREM sleep and under
anaesthesia, they can predominantly be observed in the cerebral cortex [2,20,166–170],
but also in other brain regions, including the thalamus [171,172], thalamic reticular nu-
cleus [173], hippocampus [170], striatum [174,175], brainstem [176] and claustrum [177].
Slow oscillations play a role in sleep-dependent memory consolidation [26,29,178].

The sleep–wake cycle regulates the concentration of amyloid-β and tau in the cere-
brospinal fluid (CSF) and interstitial fluid (ISF), with a higher level of amyloid-β and tau
occurring due to prolonged wakefulness or sleep deprivation [179,180]. Slow oscillations
are also linked to the activity of the glymphatic system, a highly organised CSF transport
system, to clear protein waste products including amyloid-β [23]. Indeed, abnormalities in
slow oscillations have been associated with AD [47,49]. Thus, these results suggest a close
relationship between the glymphatic system degradation, sleep disturbance and disease
progression in dementias [181].

Here, we summarise how slow oscillations are generated and how the reduction in
slow wave activity correlates with AD pathology in human patients and mouse models.
Finally, we discuss a therapeutic opportunity based on slow oscillations. Although slow
oscillations are closely related to sleep, especially NREM sleep, we focus primarily on
the oscillation itself and slow wave activity. Readers may refer to recent comprehensive
reviews on sleep and AD elsewhere [46–49,182,183]. Readers can also refer to an up-to-
date review of the detailed mechanisms of slow oscillations [184]. Although covering the
detailed molecular mechanism is beyond the scope of this review article, transcriptomic
and synaptic phosphorylation profiles related to sleep–wake cycles have recently been
characterised [185,186].

Regarding terminologies, slow oscillations refer to oscillations at less than 1 Hz,
whereas delta oscillations refer to oscillations at 1–4 Hz. However, delta oscillations
are often described as 0.5–4 Hz oscillations in literature; hence, they may include slow
oscillations. Slow wave activity (SWA) typically refers to spectral power around the
0.5–4 Hz range. SWA is closely associated with sleep homeostasis [187]: it increases
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proportionally to time spent awake and peaks in slow-wave sleep, whereas it decreases as
sleep propensity is reduced.

3.1. Mechanisms of Slow Oscillations

Earlier studies showed that slow oscillations can be generated in isolated cortical
gyrus [188], a cortical slab [169] and cortical slice [189], suggesting that cortical circuits
are sufficient for the generation of slow oscillations. Subsequent studies have consistently
demonstrated that recurrent excitation of layer (L) 5 pyramidal cells is a source of slow
oscillations [166,168,189,190]. This notion has been confirmed by computational studies,
in which UP and DOWN states can be reproduced by models of neural populations with
recurrent excitation and slow adaptation (e.g., activity-dependent K+ current or synaptic
depression) (Figure 4A) [191–195].
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Figure 4. Models of slow oscillations. Two types of neural population (rate) models for UP and
DOWN dynamics are illustrated. (A) A neural population model with recurrent excitation, slow
adaptive process a and noisy fluctuations ξE. (B) A neural population model with recurrent ex-
citation and inhibition, slow adaptive process and independent noisy inputs. The physiological
implementation of the adaptive process can be activity-dependent K+ current or synaptic depression.

Multiple receptors and ion channels contribute to shaping UP and DOWN states. For
example, both NMDA and non-NMDA receptors are involved in the excitatory drive of UP
states [189]. While both excitatory and inhibitory neurons are active during UP states (see
below for more details), GABAA receptors play a critical role in UP state duration [196]. The
termination mechanism of UP states remains to be fully determined, as various processes
have been proposed (for a review, see [184]).

Although recurrent excitation of L5 pyramidal cells plays a dominant role in slow
oscillations, accumulating evidence has demonstrated a complex picture: while recurrent
excitatory activity during UP states is balanced by inhibition [197], two major GABAergic
cell classes, PV+ and somatostatin-positive neurons, regulate the transitions of UP and
DOWN states [198]. A recent study also showed that deep-layer neurogliaform cells
contribute to slow oscillations by preferentially firing during DOWN states [199]. These
experimental results may favour the computational models, which implement active
contributions from inhibitory neurons to the UP–DOWN dynamics (Figure 4B) [200,201].

With respect to subcortical areas, thalamic neurons play a critical role in the full mani-
festation of slow oscillations via T-type calcium channels in thalamocortical cells [171,172].
Thalamic neurons drive PV+ neurons during DOWN states [202]. PV+ neurons can be
also activated by claustral neurons to induce DOWN states across cortical regions [177].
Moreover, it has been suggested that astrocytes play a role in slow oscillations and NREM
sleep [203–207]. Thus, the exact mechanisms of slow oscillations remain to be fully deter-
mined [208]. While the detailed biophysical models of cortical columns [209,210] could
provide valuable insight into the mechanisms of slow oscillations, implementing subcortical
inputs and the non-neuronal components are still challenging.

Although slow oscillations can arise from various cortical areas as “slow waves”,
they often start from the lateral and medial frontal cortical regions and propagate as



Biology 2021, 10, 707 10 of 23

travelling waves to posterior cortical areas in the human brain [211–213]. While cortex-
wide spontaneous activity can be examined by various means, correlating different signals
(e.g., electrical, hemodynamic, intracellular calcium signals) is still an open issue; this
would help gain insight into the mechanisms of cortex-wide slow waves.

3.2. Slow Oscillations and AD in Humans

Sleep disturbance is a common symptom of AD pathogenesis, with sleep fragmen-
tation, increased nocturnal activity and excessive daytime napping contributing to the
disruptions to daily life [46,214–220]. Thus, it is not surprising to see the robust association
between abnormalities in slow-wave sleep and AD pathology in humans [46,221–226]. Ad-
ditionally, earlier studies in the 1980s and 1990s demonstrated an association between abnor-
malities in slow wave activity and AD pathology, including cognitive functions [227–229].
Specifically, studies show that impairments in slow-wave sleep are associated with im-
paired cognition. In recent decades, it has become evident that these associations are
underpinned by structural changes and AD pathology in the brain: age-related prefrontal
atrophy is associated with reduced slow-wave activity during NREM sleep [230]. Addi-
tionally, a bi-directional relationship between slow-wave sleep and AD pathology exists, as
slow-wave activity during NREM sleep decreases as amyloid-β deposition and tau accu-
mulation increase [231,232]. The reduction in slow-wave activity is also associated with
the impairment in sleep-dependent memory consolidation [231]. Thus, changes in slow
oscillations are a robust biomarker of AD pathogenesis in humans although underlying
cellular and circuit mechanisms remain unclear.

3.3. Slow Oscillations and AD in Mouse Models

The sleep-wake cycle has been examined across different pathological stages in various
mouse models, including 3xTg-AD [233,234], APP/PS1 [234,235], Tg2576 [234,236], P301S
Tau [237], rTG4510 [238], PLB1Triple [239], and PLB2tau [240] models (Table 3). Slow (<1 Hz)
oscillations have been analysed together with delta oscillations (1–4 Hz), which can be
used to determine NREM sleep. In several AD mouse models, NREM sleep is reduced
and fragmented [233,234,237,238], which implies that changes also occur in the patterns of
slow oscillations. It has been suggested that the reduction in GABAergic tone impairs long-
range synchronous firing in an amyloid mouse model [92]. Intriguingly, P301S Tau model
exhibited the inverted U-shape profile at the delta frequency, meaning that delta power
increases at an early disease stage, whereas it decreases at a later stage [237]. Longitudinal
studies in AD mouse models may provide valuable insight into the mechanisms of age-
related changes in slow oscillations.

3.4. Neuromodulation of Slow Oscillations for AD

Pharmacological and optogenetic intervention approaches can modify abnormalities in
slow oscillations, hence the AD disease state in mouse models (Table 4) [87,92,241,242]. For
example, a breakdown of long-range coherence of slow oscillations in an AD mouse model
can be rescued by enhancing GABAergic inhibition with a GABAA receptor agonist [92].
This is consistent with the notion that aberrant somatic GABAergic tone plays a critical
role in the hyperactivity of cortical neurons [140,243]. Kastanenka and his colleagues
demonstrated frequency-specific effects of optogenetically induced cortical slow oscillations
on AD pathology [87,241]: slow-wave-specific 0.6 Hz optogenetic stimulation of αCaMKII+
neurons in the anterior cortical area can reduce amyloid-β and increase GABAA and
GABAB receptor expression. On the other hand, 1.2 Hz stimulation, a slight offset from a
slow-wave-specific frequency band, shows an opposing effect without altering GABAA
and GABAB receptor expression. These results imply that increasing inhibitory tone may
play a role in reducing amyloid burden. One potential caveat is that, because increased
and decreased firing rate can also modify AD pathology [244–247], optogenetic stimulation
at higher frequencies may also induce a higher firing rate, leading to the promotion of
amyloid deposition. Future studies are needed to determine whether and how the temporal
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structure of neural population activity, rather than simple firing rates, can modify AD
pathology. Additionally, although abnormalities in slow and delta oscillations have been
reported in tau models (Table 3), it remains to be explored whether artificial manipulations
of slow oscillations can modify tauopathy as well as other pathological features.

Table 3. Slow and delta oscillations in AD mouse models.

Mouse Model Age (Months) Sex Frequency
Band (Hz) Changes in Oscillations Reference

3xTg-AD 7, 20 M/F <1
Increased frequency at 7 months

Decreased frequency at 20 months
More irregular at 20 months

[233]

3xTg-AD 18 M/F 0.1–4 No change

[234]APP/PS1 8–10 M/F 0.1–4 Decreased power during NREM

Tg2576 12 M/F 0.1–4 Decreased power during W

Tg2576 2, 6, 12 NA 0.5–4 Decreased power during NREM at 6–12 months [236]

APP/PS1 3, 6, 9 NA >1 Shorter NREM at 9 months [235]

P301S 3–12 M 1–4
Increased power during NREM at 6–9 months

Decreased power during W and NREM at
11 months

[237]

rTg4510 5–10 M 0.1–4 Decreased power during NREM from 6 months [238]

PLB1triple 5–21 M/F 0.5–5 Decreased power during REM at 9 months
Decreased power during W at 21 months [239]

PLB2tau 6 F 1.5–5 Increased power during REM
Decreased power during NREM [240]

REM, rapid eye movement sleep. NREM, non-REM sleep. W, wakefulness.

Table 4. Summary of invasive and non-invasive neuromodulation of slow oscillations in AD mouse models.

Induction
Method Protocol Duration Model Sex Age

(Months)
Modulated AD

Phenotype Reference

In
va

si
ve

Optogenetic

400 ms pulses,
0.6 Hz, Anterior

Cortex

24 h/day
for 1 month

APP/PS1,
AAV5-CamKIIα-
hChR2(H134R)-

mCherry

M/F 4–7

Reduced Aβ

Reduced calcium
overload

Restored GABA levels

[87]

400 ms pulses,
1.2 Hz, Anterior

Cortex

24 h/day
for 1 month

APP/PS1,
AAV5-CamKIIα-
hChR2(H134R)-

mCherry

M/F 3–9

Increased Aβ

Increased calcium
overload

Decreased spine
densityNo change in

GABA levels

[241]

N
on

-I
nv

as
iv

e BACE
Inhibitor

(oral)

Administration
of 0.25 g/kg

NB-360 in
food pellets

6 weeks
ad lib APP23xPS45 F 6–8

Reduced Aβ

Reduced calcium
overload

Improved spatial
memory

[242]

GABA-A
Agonist

(i.p.)

Administration
of 0.05 mg/kg
clonazepam

Once/day
for 5 days APP23xPS45 M/F 6–8 Improved spatial

memory [92]

Nevertheless, these studies suggest that pharmacological and non-pharmacological
interventions for slow oscillations have therapeutic potential for AD. Indeed, accumulating
evidence shows bidirectional relationships between sleep and AD pathogenesis [48,248].
It is important to investigate whether artificially enhanced slow oscillations can also
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trigger other non-neuronal events, such as glymphatic waste clearance, which can be seen
in natural slow-wave sleep and even under anaesthesia [23,249]. As discussed above,
because multiple components contribute to slow oscillations, various approaches could
be explored to modify these and, hence, AD pathology. It is by taking advantage of these
various approaches for the neuromodulation of slow oscillations that evidence for potential
different modes of action on AD pathology will be unearthed.

4. Conclusions and Future Directions

By focusing on gamma and slow oscillations, we summarised how these oscillations
can change during AD pathogenesis in both humans and mouse models. We also reviewed
emerging invasive and non-invasive neuromodulation approaches to modify AD pathol-
ogy in mouse models based on gamma and slow oscillations. Although further studies
are essential to uncover the underlying mechanisms before clinical applications, these
neuromodulation-based interventions are promising frontiers for AD and beyond.

To further explore this emerging field, the following four areas are important for
investigation. Firstly, it is essential to comprehensively characterise electrophysiological
biomarkers in AD animal models, with respect to neural oscillations. As well as offering
potential biomarkers for early diagnosis, this will aid in the understanding of neural os-
cillations in AD and abnormalities throughout its progression. As we discussed above,
although reduced gamma power has consistently been reported in mouse models (Table 1),
the available evidence in human patients is conflicting [39–41,128–132]. The gap between
mouse models and humans may be due to discrepancies in methodologies between studies,
a lack of proper longitudinal studies in mouse models, or the limitations of animal mod-
els [250]. Since better mouse models which reflect human pathological features are under
development [156], it will become important to conduct detailed in vivo electrophysiolog-
ical investigations correlating with various molecular and cellular AD pathologies—not
just amyloid pathology, but also tauopathy and other pathological features.

Secondly, it is worth exploring other brain states, not just gamma and slow oscillations,
because a wide range of neural oscillations or events have been studied in general neuro-
science [1,13,33,251]. With respect to sleep, the reduction in REM sleep duration is an early
biomarker during AD pathogenesis [221,227,228,252]. During REM sleep, hippocampal
theta rhythms and ponto-geniculo-occipital (PGO) waves are prominent electrophysiolog-
ical markers [14,21,253,254]. Intriguingly, PGO waves and theta rhythms are temporally
coupled across animal models [21,255–257]. Therefore, it is interesting to investigate how
this functional coupling between several sleep-related neural events is affected during AD
pathogenesis. PGO waves are originated from mesopontine cholinergic areas [17,19,258]
and the neurodegeneration of mesopontine cholinergic neurons has been associated with
AD [259,260], as well as Lewy body dementia [261]. Additionally, abnormalities in sleep
spindles and sharp wave-ripples during NREM sleep have also been associated with
AD [16,49,252,262]. Therefore, these sleep-related neural oscillations may be alternative
targets for non-pharmacological interventions.

Thirdly, the means of neuromodulation needs to be explored further. Although opto-
genetic approaches can achieve cell type-specific manipulations with a high spatiotemporal
resolution, non-invasive approaches are ideal for clinical applications. A chemogenetic
approach, along with a detailed characterization of brain state, could be a promising direc-
tion, since a recent study demonstrated that the chemogenetic attenuation of hyperactivity
in the entorhinal cortex can ameliorate AD pathology, including the spread of pathological
tau [245]. At present, repetitive transcranial magnetic stimulation (rTMS) and transcranial
direct or alternating current stimulation (tDCS/ACS) have shown promising results [65,66].
In addition to these brain stimulation methods, sensory stimulation is also an attractive
approach to modulate gamma oscillations across brain regions [86,89,90]. Several neural
oscillations or neural events during sleep are also known to be induced or modulated by
sensory inputs [263–265]: for example, PGO waves during REM sleep can be triggered
by sounds [265]. In addition, slow oscillations can be modulated by sounds to promote
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memory consolidation [263]. Thus, neuromodulations based on auditory stimulus during
sleep may be an attractive option.

Finally, the most important research direction is to uncover the mechanisms of how
the manipulation of neural oscillations can modify pathological features across multiple
spatial levels, from molecular to neural circuit levels. Supposing that neurons are a key
driver for a certain neural oscillation, how can subsequent molecular responses trigger
non-neuronal events, such as microglial and astrocytic activation and the modification
of neurovascular coupling? In addition, neural oscillations are typically induced by mul-
tiple neural circuit motifs [5,208,266]. A fundamental issue is to uncover the direct link
among electrophysiological signatures, cell-type-specific neuronal activity, non-neuronal
activity and molecular responses. Given the complexity of such interactions over mul-
tiple spatiotemporal scales, computational approaches will play a crucial role in better
understanding the effects of neuromodulation approaches on AD pathology. Thus, we
predict that integrative, systems-level approaches will become increasingly important in
the coming years.

In conclusion, bi-directional relationships between AD pathology and brain states
have become evident. While gamma oscillations and slow oscillations are promising targets,
many issues remain to be explored. For future clinical applications, it is crucial to establish
a causal relationship between AD pathology and neuromodulations at various levels, from
molecules to neural circuits.
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