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Abstract
Objective. We present a computational method that implements a reduced set of Maxwell’s
equations to allow simulation of cells under realistic conditions: sub-micron cell morphology,
a conductive non-homogeneous space and various ion channel properties and distributions.
Approach. While a reduced set of Maxwell’s equations can be used to couple membrane
currents to extra- and intracellular potentials, this approach is rarely taken, most likely because
adequate computational tools are missing. By using these equations, and introducing an
implicit solver, numerical stability is attained even with large time steps. The time steps are
limited only by the time development of the membrane potentials. Main results. This method
allows simulation times of tens of minutes instead of weeks, even for complex problems. The
extracellular fields are accurately represented, including secondary fields, which originate at
inhomogeneities of the extracellular space and can reach several millivolts. We present a set of
instructive examples that show how this method can be used to obtain reference solutions for
problems, which might not be accurately captured by the traditional approaches. This includes
the simulation of realistic magnitudes of extracellular action potential signals in restricted
extracellular space. Significance. The electric activity of neurons creates extracellular
potentials. Recent findings show that these endogenous fields act back onto the neurons,
contributing to the synchronization of population activity. The influence of endogenous fields
is also relevant for understanding therapeutic approaches such as transcranial direct current,
transcranial magnetic and deep brain stimulation. The mutual interaction between fields and
membrane currents is not captured by today’s concepts of cellular electrophysiology, including
the commonly used activation function, as those concepts are based on isolated membranes in
an infinite, isopotential extracellular space. The presented tool makes simulations with detailed
morphology and implicit interactions of currents and fields available to the electrophysiology
community.
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1. Introduction

Extracellular potentials (EPs) influence the activity of
neurons [1–3]. Neuronal activity itself, synaptic currents,
sub-threshold oscillations and action currents sum up over
neuronal populations and continuously change local potentials.
Recent findings contribute to the mounting evidence that
these endogenous EPs talk back to neurons and influence
synchronization of firing patterns in vitro and in vivo [4–6].
Moreover, in therapy and diagnostics, strong, super-threshold
fields are used in the form of electroconvulsive therapy,
transcranial magnetic stimulation or deep brain stimulation
to activate large populations of neurons [7–9]. Recently,
techniques that utilize weaker, sub-threshold fields such as
direct current stimulation or alternating current stimulation
have been developed [10, 11] and were reported to influence
motor cortex excitability and higher functions like motor
learning or memory [12–14].

Although a number of modeling tools have been
introduced to study the interaction of EPs and neurons [15–20],
new research tools are required to more accurately model
this relation. In some applications, it is enough to calculate
the EP waveform from a given number of neuronal sources
[21], or to simply study the unidirectional effects of EPs
[22–24]. However, for key applications such as understanding
of how local potentials facilitate the synchronization of
cell ensembles, or to model simultaneous stimulation and
recording in complex geometrical setups (e.g. multi-unit arrays
and novel brain–machine interfaces [25–28]), it is important to
understand both directions of the neuron–EP interplay [29, 20].

When the ‘forward’ effect, i.e. the creation of EPs by
neuronal activity, is of interest, EPs are calculated with
the line-source approximation [17]: the membrane currents
are computed for each linear segment of a one-dimensional
compartmental neuron model. These currents are then used
to calculate the EP according to standard volume conductor
theory [29–31]. This approach does not consider the feedback
from EPs in the neuron and its applicability is limited
to locations farther than 1 μm away from the active
membrane [17]. Interactions between adjacent cells within
sub-micrometer distance and the effect of clustering of ion
channels cannot be treated. Furthermore, volume conductor
theory assumes the extracellular medium to be homogeneous
and isotropic. This ignores the strong secondary fields [32]
caused by the inhomogeneities due to the cellular structure
of tissues. Secondary fields can give rise to the so-called
virtual electrodes, and can dominate the effect of EPs on
excitable tissue [33]. Secondary fields at tissue boundaries
are sometimes considered, both for stimulation (e.g. [34, 35])
and endogenous extracellular fields [36].

To simulate the ‘feedback’ effect, i.e. the changes in
the cell caused by EPs, similar principles are connected in
a different sequence. The EP is computed from external
current sources while assuming piecewise homogeneity, hence
ignoring the possibility of virtual electrodes on cellular scales.
Neurons are then represented by a concatenation of one-
dimensional cables and the effect of the EP is included by
means of the activation function [15] as an additional source

term in the cable equation (CEq) [37]. In finite cables, this
effect is calculated by projecting the extracellular field onto
the axis of the cables, and the stimulation itself is emulated by
current injection in the ends [38–41].

The activating function is an approximation whose utility
has been questioned [42, 43]. As it simply acts as an additional
source term in the CEq, its applicability is also limited to
particular geometries. A simple illustration of the problem
is its inability to properly represent a spherical cell body
inside a homogeneous field. To compute the effect, the sphere
has to be approximated by cylindrical sections. When the
field is directed perpendicular to the cylinders’ axes, this
does not exert any influence on the cell body (see figure 5).
The simulated effect of the EP on this symmetric structure
erroneously depends on the cosine of the polar angle of the field
direction.

A correct solution of the forward and feedback problem
in the neuron–EP interaction requires a complete spatial
representation of the neuronal membrane and its relation
to the intra- and extracellular potentials. This comprises a
self-consistent solution of the Laplace equation governing
the potential and the nonlinear equations that determine the
voltage-dependent membrane currents (i.e. the sources of the
potential changes). The solution to the Laplace equation for
arbitrary geometries can be achieved with finite difference
method (FDM), boundary element method (BEM), finite
volume method (FVM), or finite element method (FEM). A
numerical time iteration scheme then has to be selected to
model the evolution of the potentials.

FEM and related methods have been used to model
the stimulation of arbitrarily shaped cells for studies of
the effects of electroporation, as well as to model simple
neuronal geometries [16, 18, 44, 20, 45]. These approaches
have however failed to provide a widely available tool that
can fully model the neuron–EP bidirectional interaction.
The deficiencies can be summarized in three aspects:
computational limitations to represent detailed geometries,
lack of efficient time evolution schemes and the use of closed
and commercial numerical solvers. FDM approaches such as
those described in [44] represent geometries in meshes with
a fixed-grid spacing determined by the smallest feature in
the domain. Due to the very large number of elements, the
computation time of these simulations is impractically long
for realistic, sub-micrometer morphological features. BEM
approaches [46, 47], although more computationally efficient,
cannot represent spatially heterogeneous conductivities. FEM
and FVM have been employed in other cases [16, 18, 20, 48,
45], but these systems have been limited to unrealistic spatial
scales [19, 48], restrictive time evolution schemes [16, 18, 19,
48, 45], two dimensions [18] and the absence of ion channels
[16, 18, 19, 45]. The use of closed source [18, 19, 48] and
commercial software [16, 20, 45] is a common feature among
all these works, hindering its applicability and replicability of
their results in other scientific studies.

The importance of computationally efficient methods
is emphasized if the details of neuronal geometries are
considered, e.g. in fine distal dendrites, or the sub-
micrometer distances between cells. In the two-dimensional
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simulations of Ying and Henriquez [18] for instance, the
explicit Euler method was used. The explicit Euler method
requires extremely fine time steps for micrometer geometries,
limiting the physiological times that can be simulated. These
requirements become more stringent as the geometry is
extended to three dimensions and the complexity of the
spatial domain increases. Besides the realistic, true sub-micron
distances fundamental for the study of cell-to-cell interaction,
times beyond a few milliseconds are crucial for the study
of neuronal synchronization and more complex stimulation
protocols. To our knowledge, such simulations have not been
performed, most likely because of the large computation time
involved.

In this work, we present a numerical method for the
treatment of heterogeneous, three-dimensional, intra- and
extracellular spaces separated by membranes with voltage-
dependent conductances. To permit efficient simulation of
detailed geometries, two main strategies are used: first, the
equations governing the time evolution of the electric potential
in space were separated from the nonlinear equations that
treat the membrane currents. This follows the ideas of heart
bidomain solvers [49] and a previous approach [18]. Second,
an implicit time iteration scheme based on the Crank–Nicolson
(CN) method is introduced. This scheme allows simulation
time steps which are orders of magnitude longer than the Euler
scheme, without causing numerical instabilities. The use of this
implicit method also grants applicability of adaptive time-step
schemes, shortening computation times by one to two orders
of magnitude.

The FEM presented here has been implemented in an
open-source software tool. The tool can run simulations that
extend over physiologically relevant times (tens to hundreds of
microseconds), can allow the representation of detailed sub-
micrometer cell morphologies and can include ion channels
with arbitrary voltage-dependent gating schemes. The tool
can represent stimulation, recording and feedback between
extracellular fields and the membrane at realistic spatial
and temporal scales. In the next sections, we introduce the
physical model and provide essential details of the solving
procedure. Treating standard geometries, we demonstrate that
the numerical solutions with the method converge to the
analytical solutions. We present stability conditions for the
numerical scheme chosen, describing the time-step limits
for a given spatial discretization. Finally, we point out that
the presented approach can treat problems that are only
inadequately captured by the CEq, activation function and
line-source approximations. This suggests a use of our tool
as a reference to test and correct the solutions obtained by
widely used CEq solvers such as NEURON and GENESIS. By
working through a set of instructive examples, we demonstrate
the importance of simulating neurons with realistic time
and space scales. The tool is available for download under
the project Cancer, Heart and Soft-Tissue Environment
(CHASTE) [50] (http://www.cs.ox.ac.uk/chaste).

2. Methods

2.1. Description of the model

The model represents the electrical activity of a biological
cell inside a conductive medium (figure 1(A)). Space is
segregated into an extracellular domain �e and possibly
multiple intracellular domains �i (� = �e ∪ �i). The
domains do not overlap (�e ∩ �i = ∅) and are each
characterized by space-dependent conductivity tensors σe

and σi. Unit normal vectors at domain boundaries point
outward and are denoted ne,i. Intra- and extracellular domains
are separated by membranes �, assumed of zero thickness.
Membranes accumulate charge due to capacitance and can
harbor voltage-dependent ion channels. The voltage channels
can follow nonlinear differential equations, for instance,
Hodgkin–Huxley-like kinetics.

For neural electric phenomena, a few simplifications in
Maxwell’s equations are possible. Typical spatial and temporal
dimensions of neural current fluxes, together with the dielectric
and magnetic parameters of biological media, render the
feedback from the induced magnetic field onto the electric field
negligible. Electromagnetic waves do not play an important
role in the scales observed. The high polarizability of water,
combined with the typical conductance of biological tissue,
ensures that any free, unbalanced charge is balanced within
fractions of a nanosecond. This is faster than the scale at which
the electric processes of interest unfold.

These two relations justify the use of the quasi-static
approximation of Maxwell’s equations. In this approximation,
the charge density in aqueous media is assumed to be zero
[51, 52]. This however does not exclude the possibility of
current volume density sources, and they are allowed in
the extra- and intracellular spaces (ρe,i). In the quasi-static
approximation, Poisson’s equation governs the extra- and
intracellular potentials �e,i:

− ∇ · σe(x)∇�e(x, t) = ρe(x, t) in �e (1)

− ∇ · σi(x)∇�i(x, t) = ρi(x, t) in �i. (2)

In the absence of current sources, this simplifies to Laplace’s
equation

−∇ · σe∇�e = −∇ · σi∇�i = 0.

On the exterior boundary ∂�e, Dirichlet, Neumann or a
mixture of both boundary conditions (BCs) can be applied
(figures 1(B) and (C)):

�e = �D(x, t) on ∂�D (3)

σe∇�e · ne = IN (x, t) on ∂�N . (4)

If a grounding Dirichlet boundary is specified, then the solution
is unique. When only Neumann BCs are specified, the problem
is solvable up to an arbitrary constant if the total current
through the boundary is conserved.

Membrane voltage is defined for any given point on the
membrane as the potential difference for the same point in
intra- and extracellular spaces:

Vm = �i(x) − �e(x) on �. (5)
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(A) (B)

(C)

Figure 1. Schematic of the solution domain (SD) and example BCs. (A) The SD is divided in intra- (�i) and extracellular (�e) regions,
separated by a membrane (�). The exterior boundary is represented by ∂� and unit boundary normals for both domains are represented by
ne,i. (Note the extracellular boundary normal points to the interior of the cell). (B) Example of a 2D model with mixed BCs. The model and
simulation tool allow time-dependent mixed Neumann and Dirichlet conditions. In this case, Neumann zero flux BCs are used at the top and
bottom boundaries, while a Dirichlet zero BC used on the right represents a ground electrode. Stimulation can be driven by a
time-dependent current density on the left boundary. An elongated cell is present in the center of the domain. The flux and ground create
extracellular (�e) and intracellular (�i) potential gradients. (C) Corresponding potential for the stimulus gradient along the dashed line in
(B) after 2 μs of stimulation (|E| = 1000 V m−1, σe = σi = 10 mS cm−1).

Extracellular and intracellular current toward � is
continuous for any small volume intersecting it and is denoted
by the membrane current Im:

Im = ne · σe∇�e = −ni · σi∇�i on �. (6)

As current reaches one patch of membrane, it can either trigger
the same amount of current being released in the opposite
side or cross it through ionic flux. Total membrane current
corresponds to the exchange of capacitive current plus the
sum of transmembrane ionic currents (Iion):

Im = Cm
∂Vm

∂t
+ Iion, (7)

with Cm being the membrane capacitance per unit area. Ionic
currents Iion(Vm, u) can be determined by nonlinear ordinary
differential equations depending on the membrane voltage and
a vector of gating variables u� at every node of �:

∂u
∂t

= f (Vm, u� ) .

A simple passive membrane current can also be used:

Iion = Vm

Rm
,

with Rm being a constant membrane resistance. The main
variables and parameters of the model are summarized in
table A1.

2.2. Space discretization

To solve the complete space and membrane problem,
the equations governing the potentials in the intra- and
extracellular domains and the equations governing the
time development of the membrane currents are solved
alternatingly. Equations (1), (2), and (6) with BCs (3) and
(4) are solved for a fixed moment in time with a fixed Vm using
the FEM. A complete discretization and proof of existence
of the solution for this spatial problem was presented by
Lamichhane and Wohlmuth [53]. The FEM discretization is
shown in appendix A.1.

2.3. Time discretization

Equation (7) is solved for a discrete time step after the
solution of equations (1), (2) and (6) with the procedure
specified in section A.1. At each time step, the discrete space
equations (A.4) and (A.3) are solved for a fixed voltage vector
Vm. The resulting Im is used together with the vector of ionic
currents per node Iion(Vn

m) to find the next membrane voltage.
The time iteration can be either explicit with the Euler method
or implicit in the case of the CN method. The explicit scheme
is easily obtainable with the previous values:

Vn+1
m = Vn

m + �t

Cm

(
In

m − In
ion

)
. (8)

The new Vn+1
m is then ready to be used again to solve the spatial

equations.
The Euler scheme, however, is limited (see section 3) and

an implicit CN was implemented. The CN scheme requires the
next membrane current value In+1

m :

Vn+1
m = Vn

m + �t

Cm

(
1

2

(
In+1

m + In
m

) − In
ion

)
. (9)

In+1
m is an unknown future value of Im and might prompt for

an additional numerical strategy (e.g. a Newton solver). Still,
through a careful re-arrangement of the terms, the same linear
solver used to find � can be employed. Defining c = �t

2Cm
and

gn = Vn
m + �t

Cm

(
1
2 In

m − In
ion

)
, one obtains

Vn+1
m = cIn+1

m + gn.

Combining the time iteration with the linear system as a vector
in the advanced time step Muk+1 = bk+1 results in

[
A B
BT 0

] [
�n+1

In+1
m

]
=

[
f

G
(
cIn+1

m + gn
)] .

After matrix manipulation and C = −cG, the new linear
system is [

A B
BT C

] [
�n+1

In+1
m

]
=

[
f

Ggn

]
. (10)

For the solution of (10), the system was factorized to
eliminate Im as done with system (A.11). However after the
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same factorization procedure [53], the left-hand side is non-
symmetric (due to matrix C). The generalized minimal residual
method was used instead of CG in this case.

Contrary to the Euler method, any solution to (10) depends
on the previous Im (implicit in gn). This makes the method
particularly weak at initialization and fast changing exterior
stimuli. A better solution can be obtained by pre-calculating

I
n+ 1

2
m in a predictor–corrector scheme. This will be referred

to as the Euler–Crank–Nicholson (ECN) method (see also
figures 3(E) and (F)).

2.4. Computer setup

The software solver was written in C++ code, linked
to the GNU-LGPL library CHASTE. CHASTE is being
actively developed by the Computational Biology Group
at the Oxford Computing Laboratory [50]. This framework
provides functionalities for the solution of PDEs and
ODEs for the heart and other tissues but does not
provide cell membrane representations. To include the
concept of insulating membranes, various additions to
the CHASTE package were added using standard object-
oriented programming techniques. These extended CHASTE’s
bidomain and ion channel functionalities, implementing the
model, are presented in section 2. In its current version, the
tool has been in development for 21 months. We named
our tool CHASTE-Membrane and can be obtained for free
on http://www.cs.ox.ac.uk/chaste/download.html under the
‘Bolt-on Projects’ section.

Two- and three-dimensional meshes were generated with
the GNU-GPL tool Gmsh [54]. The neuron reconstruction
presented in section 3 used NEURON’s [55] Python’s
interface to parse the 1D geometry and Gmsh to generate
the mesh. A custom-written Python code was used for the
demarcation of the cell membranes and post-processing. Extra-
and intracellular spaces are effectively independent meshes
that only share node positions at the interfaces. Example
meshes are provided in the software toolbox online. Paraview
(Kitware Inc.) was used for visualization and sampled
extraction of potentials over space. We used PETSc (Argonne
National Lab.), integrated in CHASTE, to solve the linear
systems produced by the FEM method. For the convergence
simulations, an absolute tolerance value of 10−14 was used.
For the simulations of figures 8 and 9, an absolute tolerance
value of 10−6 was used. For the rest of the simulations, a
relative tolerance value of 10−6 was used. All simulations,
except the example in figures 8 and 9, were executed in a
single processing core of an Intel R© Core 2 Quad 2.83 GHz
CPU, in a desktop computer with 4 GB RAM.

3. Results

3.1. Convergence, stability and computation time

The solution scheme, introduced in the previous section,
consists of two separate procedures: one solves
equation (A.11) finding the electric potential � and the
current Im, under BCs on ∂�; the other adds up the membrane

currents that result from the electric potential and ion fluxes,
updating the membrane voltage Vm. The new Vm represents
an updated condition on �. Given stationary BCs, if Vm over
� corresponds to a steady-state value, the electric potential
will correspond to the steady-state distribution of potential in
�. In this stationary case, the implementation of the spatial
solver (equation (A.11)) can be tested independent of time
evolution (equations (8) and (9)).

Making use of this principle, it was assessed how the
discretization of space influences the precision of the solution.
For sufficiently fine spacing, the numerical solution should
eventually converge toward the analytical solution. One of the
cases where the analytical solution is known is for a 2D circular
cell stimulated by a homogeneous field started at time t = 0
(see appendix section A.3. for this solution). Figures 2(A) and
(B) show simulations for such a cell with diameter d = 15
μm and compare it to the analytical solution. The numerical
precision was judged by comparison of the numerical solution
φn and the analytic solution φa, measured by the normalized
root mean square deviation (NRMSD):

NRMSD =
√√√√ n∑

i=1

(φn,i − φa,i)2/n
/

(φa,max − φa,min).

As the typical grid spacing h went from 8 to 0.5 μm, the
magnitude of the computed electric potential approached the
analytic solution (figures 2(A) and (B)).

The analytic solution assumes an infinite extracellular
space, so the analytical and numerical results disagreed in
the proximity of the domain boundaries ∂�. In a similar
simulation, a distance from the membrane to the boundary
of two times the cell diameter produces an error of 2.96%
(figure 3(C)). At a distance of nine times the diameter, the
error drops to negligible 0.69% (figure 3(C)).

After confirming the accuracy of the spatial part of
the numerical scheme, convergence was tested for the time
development of the potential and membrane voltage as the
time step was reduced. A configuration similar to that of
figure 2 was used in figures 3(A) and (B). The extracellular
field was imposed with Dirichlet BCs and was turned on at
t = 0. For a mesh with a typical spacing of h = 1 μm, the
numerical solution comes very close to the analytical solution
after the transition phase. This is equivalent to the observation
of figure 2. However, the initial phase of the Vm buildup is not
captured properly (figure 3(A), left).

To achieve an accurate representation of the membrane
voltage development, it is necessary to reduce the time step.
The numerical solution converges to the analytic solution as the
time step is reduced first to 5 ns and then to 0.5 ns (figures 3(A)
and (B)). Because a smaller time step also allows for finer
grid spacing, the grid was improved moderately. This had
no influence on the convergence (data not shown). It was
found empirically that the machine time per mesh node and
per simulation time step (MTNT) was largely independent of
the specific problem or the dimension. For the Euler forward
solver used for figures 3(A) and (B), the MTNT amounts to
80–90 μs.
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h

h

h

E
(A)

(B)

(C)

Figure 2. Convergence tests were performed for a 2D circular cell inside a 10 V m−1 EP gradient (d = 15 μm, σi = 5 mS cm−1, σe =
20 mS cm−1, Rm = 103 �cm2, Cm = 1 μF cm−2, Dirichlet BC �D = −100x on ∂�). (A) Example of two of the spatial discretizations (h = 4
and 2 μm). (B) Comparison to the analytic solution at a stationary state (dotted line) of the numerical solution for each h along the x-axis of
the mesh (dashed horizontal line in (A)). The solution converges as displayed in the top right inset. The bottom middle inset presents the
NRMSD to the analytical solution as the element size decreases. Neumann BCs provide similar convergence rates (not displayed). The size
of � was 300×300 μm. (C) Closer results to the infinite space analytical solution can be obtained with larger boundaries. The influence of a
short 90×90 μm domain can be compared to a 300×300 μm one. A good choice of domain size has to be balanced with the number of
mesh nodes. The cell membrane voltage can be notably affected with boundary distances of one to two times the cell diameter (NRMSD
2.96 % for 90 μm and 0.69 % for 300 μm).

A similar MTNT (120 μs) was found for the next example:
a 1 μm thin and 80 μm long cable under an axial field. The
grid was generated with an intended grid spacing of 0.5 μm.
A time step as small as 2 ns was necessary to achieve a stable
solution. Due to the different morphology, the typical time
of the Vm buildup is much larger than in the previous case.
To compute a 300 ms time course, the simulation took 26 h
(explicit Euler method). With many hours of computation time
for a single 80 μm long cable, a timely treatment of realistic
problems would not be possible with this approach. Using
our insight into the different stability conditions for the Euler
and CN solvers (see appendix), the latter was implemented.

The CN solver tolerates orders of magnitude longer time
steps keeping numerical stability (figure 3(D) CN 100 ns, CN
1 μs and appendix). CN and Euler solvers reach comparable
precision when compared to a similar solution with the CEq
in perfectly conducting extracellular space [15] (figure 3(D),
dotted line). A combination of the computational steps that are
used in the Euler and CN methods allows us to compensate the
shortcomings of the CN alone (section 2). The resulting ECN
solution is precise, even at times when the stimuli change,
and allows for large time steps that would lead to numerical
instability with the explicit Euler method alone (figure 3(E),
ECN 100 ns). The instability of the explicit Euler method can
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(A)

(B)

(C) (D)

(E) (F)

Figure 3. Convergence and stability of the time-dependent solutions. (A) The layout is similar to figure 2 (d = 10 μm, E = 1000 V m−1,
� : 400 × 400 μm, initial Vm (θ, 0) = 0, same parameters). The time development of Vm is computed more and more precisely for smaller
time steps (Euler method). The text shows simulation duration and Vm error. (B) Section of the meshes used in (A). Typical mesh spacing
h = {1, 0.5, 0.25} μm. (C) 3D mesh representing a short cable-like cell (σe = σi = 10 mS cm−1, h = 0.5 μm, membrane properties as in
figure 2). (D) Numerical solutions with different solvers and time steps. The computation time can be drastically reduced using the CN
approach. As a reference, the solution of the CEq is shown. (E and F) A simulation similar to that in (A). (E) The CN method alone has
shortcomings when the exterior stimulus varies (e.g. step at t = 0). This is caused by the dependence of the method on previously estimated
membrane currents (Im). Addition of one regular Euler step previous to the CN calculation solves this problem (ECN method). (F) The
initial current Im is unknown and assumed zero on the CN method; consequently, the first field calculations have a large error. The ECN
method reaches a far better solution. Using the same time step, the Euler method alone does not lead to a stable solution.

be seen in the diverging zigzag lines in figures 3(E) and (F)
(Euler 100 ns).

Stability of the explicit Euler scheme requires time steps
in the order of hCm/σ , where Cm/σ is typically ∼10 ns μm−1.
This means that a morphology with details in the 100 nm range
demands 1 ns time steps (see appendix A.2.). The implicit CN
scheme, on the other hand, is unconditionally stable for real-
world parameters and can, theoretically, tolerate time steps

close to the membrane time constant. Convergence results
and simulation times for the different methods can be seen in
table A2.

3.2. Representing neuron details

With the application of the CN solver to FEM problems
with individual domains and insulating membranes, it seemed
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1  m

(A) (B)

(C)

(D)

(E)

μ

Figure 4. Cables with different bouton endings. (A) Meshes presenting three variations (I, II and III) on 600 μm cables (σe = 10 mS cm−1,
� : 720 μm×30 μm cylinder not shown, σi = 5 mS cm−1, Rm = 103 � cm2, h = 0.25 μm). (B) Response at point p for geometry I to a
1000 V m−1 field. At 4 ns time steps, the Euler method required 58 days. When larger time steps were used, the solution diverged (not
shown). With ECN, a 1 μs time step could be used and computation time dropped to hours. The solution of the CEq is displayed for
comparison. The 1 mV difference in the steady state reflects the finite area of the cable caps, not present in the CEq. Larger cap areas tend to
lower the voltage (see (C)). NRMSD (%) is comparable for both methods. (C) Response at p for I, II and III, computed with an adaptive
scheme. The scheme further reduced simulation time while resolving the initial response (inset). Changes in the time step are denoted by
changes in the line styles. Simulation times are given and the NRMSD to the analytical solution is given in parenthesis. (D) Log–log plot of
the membrane currents Im (p) from (C). The five-part adaptive schedule (�t) was chosen qualitatively from variations in the current slope.
(E) Cross-section of the EP at the steady state (t > 6 ms) after the subtraction of the stimulus potential. After the deactivation of the
capacitive current, the ionic current distorts the EP, especially when there is a bouton.

possible to treat realistic geometries and timescales within
computation times of hours. This was put to a more rigorous
test by the simulation of a 600 μm long and 0.5 μm
thick axon-like fiber under stimulation by a strong field
(1000 V m−1). Cable endings are especially interesting for
the effects of neuron stimulation because under spatially
homogeneous conditions, endings are the places where the
largest depolarization occurs [37, 56]. The exact shape of the
endings and the influence of this shape on the magnitude of
the induced depolarization have not been studied.

To show the potential of our approach to represent fine
details in the morphology and analyze their effect, three
different meshes representing differently shaped presynaptic
boutons were created (figure 4(A)). The response of a finite
neurite to an external field can be divided into two phases:

a very rapid, initial depolarization (few microseconds) and a
later equilibration of membrane currents (milliseconds). To
represent both phases, a simulation duration of 8 ms was
chosen. With a typical mesh spacing h = 0.25 μm (imposed
by the cable radius), the explicit Euler method required a time
step of 4 ns to avoid divergence due to numerical instability.
The total computation time with the Euler forward method
was eight weeks for cable I (figure 4(B)). The same precision
was obtained more than 230 times faster, when the ECN
solver was used with a time step of 1 μs, demonstrating
the importance of this approach (figure 4(B)). Note that the
numerical solution displays a small difference to the analytical
solution in the steady-state membrane potential. This is likely
an effect of the finite diameter of the 3D cable. Overall, the
NRMSD was 1%.
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(A) (B)

Figure 5. Deficiencies of the cylinder segmentation and the CEq for extended structures such as the soma. (A) A spherical body (SB) can
only be represented as a collection of cylinders in the CEq. Under a homogeneous electric field E, the stimulation of each cylinder
corresponds to simultaneous and opposite current injections in the two cylinder ends. This injection is proportional to the projection of the
field along the cylinder’s axis. As the SB is rotated (0◦–90◦), the projection of the electric field vanishes despite the symmetry of the
underlying problem. (B) Even at 0◦, the CEq is inaccurate representing the stimulation of an SB. Upper traces correspond to the analytical
[58] and numerical membrane voltage response of the 3D SB calculated with the tool (d = 15 μm, Rm = 103� cm2, Cm = 1 μF cm−2, σe =
σi = 10 mS cm−1, |E| = 1000 V m−1, Vm measured at the rightmost point). The CEq does not represent the cylinder faces so their extra
resistance and capacitance are not accounted for.

Although the ECN method was fast, to resolve the
influence of the bouton shape on the depolarization in the
initial phase, the time step of 1 μs was too large. For this
purpose, the use of adaptive time steps is more appropriate. In
this way, the fast response at the beginning of the simulation
and the slow response at the steady state can be captured.
With this approach, computation times can be reduced further
(figures 4(C) and (D)). For this example, the points at which the
time steps were switched had been chosen manually, guided by
the magnitude of the membrane currents Im. This approach is
motivated by the fact that the change in the potential depends
on Im in equation (9). For large membrane currents, the time
steps have to be chosen short in order to capture the rapid
changes in the potential. This scheme can be extended into
an automatically adapting time step: the values of Im are
available during the computation, as equation (A.12) is solved.
Depending on the recent Im values, the next time step can be
chosen.

We found that the different bouton shapes influence the
membrane potential Vm and the EP. The presence of a synaptic
bouton increases the membrane depolarization during the
initial phase, reflecting the rapid redistribution of charge in
the bouton compartment. In the steady state, after several
milliseconds, the larger surface of the bouton leads to a larger
ionic current. This diminishes the depolarization, but increases
the EPs (figure 4(E)).

3.3. Deficiencies of the cylinder segmentation under external
stimulation

The vast majority of studies of neuronal morphology is
based on calculations that approximate the cell by cylindrical
sections. The membrane potential in each section then
develops according to the CEq. This approximation is very
powerful and its application dominates the picture of electrical
processes in excitable cells that we have today. Even the values
for a basic parameter such as the cytosolic conductivity (σi)
are obtained by matching measured voltage differences with
voltage differences predicted from cable models [57]. The
approximation of neurons as concatenations of cylindrical

cables breaks down on the micrometer scale, for instance,
when fine structures such as synaptic boutons or dendritic
spines deviate from axial symmetry. While attempts can be
made to account for the presence of extra membrane in the
spines (by adjusting the surface capacitance and conductance
obtaining valid expressions for the average voltage across
a longer segment) on the microscopic scale, only a right
representation of the morphological details can give correct
simulations of the membrane voltages.

Even larger problems arise, when the relevant physical
processes do not evolve within the axial/radial coordinates
of the cable segments. To describe the interaction between
a cylindrical segment and the extracellular field, only the
field’s component perpendicular to the cylinders faces is
used to compute the CEq [38]. This works well as long as
the approximation of a very thin cable is appropriate but
it completely fails for spherical structures like cell bodies
(figure 5). The key problem is the fact that only the area of
the cylinder’s faces determines the magnitude of the stimulus,
while the area of the cylinder side determines the capacitance
and conductance of the membrane. Face area and side area
cannot at the same time match the effective areas of the sphere.
This causes an erroneous result for the effect of extracellular
stimulation of a cell body, even in the case that the field is
oriented along the cylinders’ axes (approximate 30% error
in figure 5(B), 0◦). When the orientation is changed, the
approximation breaks down completely (figures 5(A) and
(B)). This is a fundamental problem of the approximation
by cylindrical segments and can only be solved when the
membrane surface itself determines the orientation of the
electric fluxes and not the axis of a segment.

3.4. Modeling multiple cells

In the brain, neurons are not surrounded by empty, infinitely
conductive space. Neurons and supporting cells are densely
packed so that only about 20% of the brain volume is
extracellular space [60]. Determining the influence of other
cell bodies in the potential signal of the neuron is the
key to understand the shape of extracellularly recorded
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(A) (B) (C)

(D)
(E)

Figure 6. Tight cell packing strongly influences the effect of extracellular stimulation. (A) The two-dimensional cell arrangement studied. In
the single-cell case, only the central cell (d = 20 μm) existed. In the cell-packing case, it was surrounded by four rings of packed cells.
Parameters used were σe = σi = 10 mS cm−1, Rm = 103 � cm2, Cm = 1 μF cm−2. (B) Detail of the mesh at inter-cell gaps. The inter-cellular
space (gray mesh) was finely detailed to improve accuracy of the solution (h = 150 nm). Simulation duration for 10 μs was 19.6 min. (C)
Under stimulation with a homogeneous electric field (1000 V m−1), the membrane voltage develops very differently for the single- and the
cell-packing case. The voltage response at the central cell is greatly reduced by the shielding. In addition, the time course of the response
exhibits a combination of the primary cell time constant (200 ns, [59]) and the membrane time constant (1 ms). A maximum is reached
around 200 μs (8.4 mV) but the final steady state is reached only after t≈4 ms. (D) The potential � − �E , at t = 1 ms, along the horizontal
axis of panel (A). Subtraction of the primary field �E , i.e. the 1000 V m−1 gradient, reveals the large secondary field outside the cell cluster
and between cells. Shaded areas represent the intracellular space. (E) Potential color map (� − �E ) at t = 1 ms. Effects from the flow of
currents at the gaps can be observed together with the distortions of up to 30 mV at the exterior of the ring.

action potentials (APs) and in general of local potentials.
Collections of cells surrounding a neuron represent resistance
and capacitance that have to be accounted for. The effect of
this distribution in the extracellular space is still debated [61].

The tool presented in this work can be used to model
collections of passive and active cells at close distances,
resolving the EP during their activity. To illustrate the
importance of representing other cell bodies, a model of a
tight packing of 2D cells under stimulation was implemented
(figure 6).

Under a homogeneous electric field, a collection of cells in
this configuration behaves essentially as a series of capacitors
and resistors fed by a constant voltage source. When the
voltage is turned on, current flows freely from one end of
the circuit to another and the potential decays in the resistors
(extra- and intracellular spaces). As charge builds up in the
capacitors (the cell membranes), the current flow decreases
and the membrane voltage increases. At the steady state, the
potential difference across the entire equivalent ‘circuit’ is
determined by the first and last membranes along the field
direction. If the various capacitors and resistors have similar
properties, the potential drops are distributed more or less
equally across them (figure 6(D)). The main effect is that
the membrane voltage of the cell targeted for stimulation is
lower, compared to that of an isolated cell (figure 6(C)). For

neuro-stimulation techniques such as transcranial magnetic
stimulation that aims at supra-threshold activation of the cell
and utilizes rapidly rising, strong stimuli as in this example, the
shadowing effect and its consequences (e.g. secondary fields
caused by the inhomogeneities of tissue [32]) can determine
success or failure of stimulation. The formation of local
secondary fields as visible in the potential gradients along the
gaps between cells is not represented by activating function
and the ‘far-field’ approach of the line-source method.

The case presented in figure 6 is equivalent to the
transversal stimulation of a bundle of ‘infinitely’ long cells in
3D. In CEq solvers, such as NEURON, transversal stimulation
exerts no effect on the membrane voltage, just as shown
in figure 5. As the FEM does not impose any symmetry
assumptions, it can represent the distortions of the EP caused
by even more local obstructions, like a single small spherical
cell body next to an active cell. The example in figure 7
demonstrates the influence of neighboring cells on the EPs
during an AP. The slightly larger sphere in the center represents
a neuronal soma that would receive a depolarizing current
during the initial phase of an AP (in reality that would be the
lateral current originating at the axon initial segment). This
typically depolarizes the soma at a rate of up to 400 V s−1. In
the simulation, the current is supplied by an injection inside
the cell with a current that varies over time, mimicking a real
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(A) (B)

(C) (D)

Figure 7. The eAP and effects of a nearby cell. (A) 3D geometry of the virtual experiment. A spherical cell (d = 20 μm) was located in the
center of a 100 × 100 × 100 μm3 cubic domain, σe = 10 mS cm−1. A second smaller cell (d = 14 μm) was placed 1.5 μm next to it. The
smaller cell had passive properties (Rm = 103 � cm2, Cm = 1 μF cm−2,σi = 10 mS cm−1, resting potential zero), while the larger cell was set
to emit an eAP with typical amplitudes and waveform. (B) EP at point p and q during 8 ms. The inset compares the potential at point p with
the intracellular potential at the center of the small cell (s). (C) Potential along axes I and II at the peak of the EP (t = 4.9 ms). Axis I pierces
the small cell. The portion of the small cell’s membrane closer to the large cell has its own voltage and distorts the extracellular space
potential. (D) Theoretical plot of the EP for a d = 20 μm cell as a function of the membrane current density J and distance. The potential
formula used was �e (r) = d2J/4σer. Typical current densities on the soma at the peak of sodium influx are around −200 to −800 μA cm−2

(theoretical estimate [29, 30]). With σe = 10 mS cm−1, this accounts for a potential near the membrane of ∼50 μV. Experimental values are
often above 50 μV and can reach higher than 150 μV.

AP current shape. When the waveform of the resulting EPs
between the active cell and the passive cell is compared to the
EP at the opposite site, the amplifying influence of the adjacent
membrane can be seen (figures 7(A) and (C)). At the peak
amplitude, the potential is amplified by 8 μV (figure 7(D)).
This difference is determined by the nearby cell whose own
response and membrane voltage (figure 7(C), inset) distorts the
potential in this region. Amplitudes of tens of microvolts can be
typical of extracellular action potential (eAP) recordings at the
given conductivity (figure 7(B)). With realistic complementary
shapes of neighboring cells, the magnitude of the amplification
would be much larger. The 8 μV effect on the potential is well
resolved by the method although its magnitude is much smaller
than the typical membrane voltage (tens of millivolts).

Note that in this simulation, a current injection was given
to the central cell. This illustrates the possibility to stimulate
by current injection at arbitrary locations, which is a feature
that would give the user the possibility to more precisely model
stimulation via a pipette.

3.5. Realistic configurations

Comprehending effects of EPs and in general of the electrical
functions of the cell requires realistic geometries and a realistic

distribution of voltage-dependent channels. The construction
of new stimulation and recording devices [25–28] such
as those required to advance nerve–computer and brain–
computer interfaces demands modeling environments that can
model this heterogeneity. Simulation methods able to model
biological tissue and artificial materials more realistically will
be fundamental to lower development and experimentation
costs.

To demonstrate the capabilities of the method and the tool
to represent realistic setups, in figure 8, simulation of a cultured
neuron equipped with voltage-gated ion channels on top of a
glass coverslip is presented. This preparation is interesting for
the development of multi-unit micro electrode arrays [62, 20].

The morphology presented in figure 8 was generated
from parts of the reconstruction of cell D151 from [30]
(see section 2). The bottom of the cell was flattened to
represent the interface with the glass; the cell and the glass
were separated by a distance of 0.8 μm. The complete mesh
consisted of 21 732 nodes and 86 716 tetrahedra in a domain
of dimensions 340 × 200 × 60 μm3. An adaptive mesh was
used, with refinements near and inside the cell down to
300 nm. A heterogeneous distribution of sodium and potassium
voltage-dependent channels was set along the cell. The sodium
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Figure 8. Potentials in and around a cultured neuron firing APs. (A) Color/grayscale indicate the membrane potential Vm and EP �e at the
bottom of the dish in a snapshot just after the initiation of the AP (t = 4.72 ms, �t = 40 μs). The cell was stimulated by the injection of
100 pA into the soma beginning at t = 0.3 ms. The AP started in the axon initial segment (∼20 μm away from the soma) which has a higher
concentration of sodium and potassium channels (see the text). Due to the low axon diameter (0.67 μm), the absolute current at the axon
initial segment is not larger than the somatic current. However, the large lateral current flowing to the soma causes a large EP (grayscale, see
details in top right inset). (B) Time trace of an intracellular recording with a ‘virtual pipette’ located at the end of the axon hillock (marked as
B in (A)). (C) Time trace of the EP just outside the axon hillock. The negative peak of the potential corresponds to the peak of extracellular
current flowing onto the membrane during sodium influx. (D) EP at different positions along the line D. The first, cyan waveform
corresponds to C. Using an extracellular conductance that is identical to the intracellular conductance, the amplitude of the potential
excursions falls off steeply over the distance of 60 μm. (E) 100 ms of activity during current injection (84 ms, same parameters). (F) The
importance of a correct treatment of detailed extracellular space is illustrated when an additional cell is added to the simulation (lower left
inset, the added cell is partially cut open to show the interface to the neuron). This electrically passive cell covers the neuron, leaving only a
1 μm cleft. This causes a strong increase in the EP in this cleft (blue trace) when compared to the case of the neuron alone (orange trace). In
these simulations, the neuron was stimulated with a larger current injection (200 pA) to elicit the AP earlier. The much larger amplitudes
(approximately 100 μV) that occur due to the very limited extracellular space correspond to experimentally observed values.

conductances for the dendrite, soma/hillock, initial segment
and the rest of the axon were, respectively, 10, 20, 120
and 20 mS cm−2. The potassium conductances, for the same
sections, were 10, 20, 30 and 20 mS cm−2. Mammal kinetics
at 23◦ were used [63].

The simulation of 8 ms of activity in this setup with the
reference software required only 45 min on a single processor
core. The solver was configured to use the ECN method with
a fixed time step of 40 μs. A longer 100 ms simulation was
executed with the same parameters producing a spike train
(figure 8(E)). This required 6 h 27 min with a time step �t =
100 μs. Computation time could be reduced to 4 h 16 min
when the computation was distributed to two processors, and
to 3 h 21 min in four processors. However, the mesh was
not optimally partitioned (see section 4). A video of this
simulation is provided online as the supplementary material,
available from stacks.iop.org/JNE/10/026019/mmedia; there,
only every second time step is displayed.

When the extracellular space is altered by the presence
of other cells, the magnitude of EPs changes drastically.
To demonstrate this, the layout of the realistic configuration
was extended to include a passive cell that covers the soma,
leaving a 1 μm cleft. This does not change the waveform of

the intracellular potential during the AP (not shown) but the
EP excursion increases 18-fold (figure 8(F)). This solves a
longstanding problem of unrealistically small eAPs that occur
when the line-source approximation is used to compute AP-
induced EPs (see section 4).

3.6. Representation of the cell under low-intensity fields

A number of experimental studies investigated the influence of
weak external fields on the neuronal population activity [5, 4].
Strikingly, fields strengths as low as 1 V m−1 or even 0.2 V m−1

[1, 3] were able to alter the temporal structure of ongoing
spike activity. A full investigation of possible mechanisms
of the observed effects with FEM simulations is outside the
scope of our study and some aspects, such as polarization
of thin processes in cultured neurons, are well captured in
cable simulators (see, for instance, [64]). There is however
one aspect our tool is particularly well suited to investigate:
the membrane potential changes in the somatic region. To this
end, we used a more complete reconstruction of the neuron
from above (figure 8, cell D151 from [30]) and exposed it to
a stationary field of 1 V m−1. In figure 9, the resulting change
of the resting membrane voltage of the entire neuron is shown
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(A)

(B)

(C)

Figure 9. A reconstructed pyramidal cell exposed to a weak stationary electric field. (A–C) A constant in time electric field of 1 V m−1 in
three orientations as indicated was used. The morphology of the simulated neuron is derived from an actual reconstruction (see the text). The
cell is more detailed than the one used in figure 8 and the axon is represented by a 1 mm long cable. Color scales indicate the induced
changes in the resting membrane potential in millivolts after 15 ms of the field onset. The membrane was given passive properties (Rm =
104 � cm2, Cm = 1 μF cm−2,σe = σi = 10 mS cm−1). The right panels show the corresponding insets of the soma. Different orientations
produce different voltage gradients on this region. Please note that the scales are different for every panel and that overviews on the left do
no correctly reflect the diameter of the neurites. Thin processes would not be visible on this scale (axon diameter 0.67 μm, dendritic tips
0.5 μm).

in the left panels; the region around the soma is magnified on
the right. Given the small magnitude of the induced field, the
voltage changes about 400 μV and one can assume linearity.
Fields of opposite orientation would cause effects of opposite
sign. As the reconstructed neuron has a rather symmetric layout
of the dendritic tree and the axon emerges from the base of the
soma, only a week polarization of the axon hillock occurs. This
would change for asymmetric configurations, for instance, for
axons emerging from a primary basal dendrite.

4. Discussion

Our quantitative understanding of electrophysiology is based
on the concepts of the Hodgkin–Huxley model and the
CEq. These concepts describe the behavior of isolated cells
inside an isopotential space. EPs can be added to this
picture following the concept of the activating function [15];
however, there are fundamental limitations to the validity
of this approach for structures that are not thin, such as
somata (figure 5). The intrinsic feedback between endogenous
extracellular fields and cellular activity is never captured
by the traditional approaches, as always only one direction,
e.g. membrane currents to potentials, is captured. When
the physical problem is formulated in a way that takes the
interaction between currents and fields into account, this
results in partial differential equations with nonlinear BCs.
While a few simulations have been published that addressed
this problem, they focused on either stimulation of cells by
extracellular fields (passive membrane [65], two dimensions
[18]) or on the detection of endogenous fields by planar
electrodes [20]. Moreover, proprietary software was used. To
our knowledge, no finite element software is openly available,

which would provide a self-consistent picture of the mutual
feedback between currents and potentials.

The presented numerical method allows detailed
simulations of the electric activity of excitable cells and
their interaction with EPs. Membranes are explicitly modeled.
They can have arbitrary shapes on realistic sub-micrometer
scales and contain voltage-dependent conductances. The
extracellular space is an integral part of the mathematical
structure. Therefore, the interplay between membrane
potential, membrane currents and extracellular fields is
intrinsic to the simulations. The method is able to solve
problems with mixed BCs, to represent geometric details and
to allow relatively long simulated times short computation
times. The code of a reference implementation of the method,
CHASTE Membrane, is released as an open source and
builds upon the open-source initiative CHASTE [50]. Along
with CHASTE, other modern, mainstream high performance
and parallel, open computing libraries are used, including
PETSc (Argonne National Lab.), MPI (Message Passing
Interface standard), HDF5 (NCSA and others), VTK (Kitware
Inc.) and CellML (Europe’s Virtual Physiological Human
Project). The use of open and well-supported libraries ensures
their continued development and optimization. CellML
grants access to a public library of ion channel kinetics
definitions and eases the implementation of new ion channel
models (http://www.cellml.org/).

Numerical precision and convergence of the method were
demonstrated using analytically tractable problems. The basic
stability criterion turned out to be linearly related to the
typical grid spacing h , unlike the h2 dependence found for
the heat equation, models of propagation of APs [40, 66] and
bidomain models of electric activity in the heart [49]. The
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linear dependence on h is a consequence of the separation
of the time and space equations and the dimensionality of
the problem: only the component of potential gradients that
is oriented perpendicular to the membrane contributes to the
membrane current Im. This directionality is also the reason
why the linear relation between the typical grid spacing
h and the largest allowed time step also holds for three
dimensions. Replacing the Euler forward solver of CHASTE
by the implicit and numerically more stable CN solver, it
was possible to increase the simulation time step and thereby
reduce computation time by orders of magnitude. For the CN
solver, the time step can approach the membrane time constant,
while for the Euler forward solver, the much shorter cell time
constant [59] was limiting. This finding is fundamental for
long-time simulations where the main observed phenomena
lie mainly in the membrane time constant regime. To reduce
computation time further, adaptive time steps and adaptive
meshing were used to reduce the number of time steps and
nodes, without compromising precision at structural details
and rapid temporal changes.

In the software implementation, standard finite element
techniques were employed to solve the numerical problem.
Interaction with the cells is possible via BCs that allow, for
instance, to fix the voltage at a membrane element or the
current that flows into the membrane. This is comparable to
the voltage clamp and current clamp point processes that are
available for user interaction in CEq simulation tools such as
NEURON or GENESIS.

Going beyond the possibilities of CEq tools, the finite
element approach allows the implementation of other physical
elements important for neural recording and stimulation,
including extraneous elements such as glass pipettes.
Heterogeneous distribution or properties of ion channels can be
implemented on a triangle-by-triangle basis, without imposing
a radial symmetry. These are important features, necessary to
understand, for instance, the heterogeneity of the shapes of
extracellularly recorded APs [62, 67]. But the most powerful
feature that this software offers over the capabilities of CEq
solvers is the explicit definition of extracellular space. This
allows a direct examination of effects like ephaptic coupling
not only on large scales but also for directly opposing
membranes, conductivity heterogeneities and anisotropies in
the extracellular space, when the assumptions of the line-
source approach break down.

Despite the large improvements with respect to time
step and computation time, finite element simulations do
not have the potential to fully replace tools such as
NEURON or GENESIS for problems that are insensitive
to the limited conductance of extracellular space, the
detailed geometry of dendrites or the heterogeneity of ion
channel densities. However with mounting evidence for the
synchronization of APs by EPs [4–6] and the progress in
neuro-stimulation techniques, many questions arise that cannot
be comprehensively addressed under the assumptions of the
CEq. In this area, the presented method can enhance the
understanding of neural activity, stimulation of neurons and
recording from neurons.

The examples presented here were intended to
demonstrate possible applications and give an idea of the

computation times involved. They focused on the interaction
between extracellular fields and neuronal activity using
realistic spatial scales and realistic parameters. A key aspect
is the effect of crammed extracellular space (figures 6 and 7)
and the interaction between extracellular fields and neuronal
activity on realistic spatial scales and with realistic parameters.
In particular, the direct comparison of eAP in free and crammed
spaces (figure 8(F)) reveals the advantages of the presented
tool. Studies that used the line-source approximation have
repeatedly noted that the experimentally observed magnitudes
of EPs are best explained by simulations, when the intracellular
resistance is assumed to be smaller than suggested by
experiments and the extracellular resistance is assumed to
be higher than the intracellular resistance (see, for instance,
[30, 36]). This can be appreciated from figure 7(D) that shows
a theoretical maximum for the eAP amplitude of around
50 μV—far less than experimentally observed amplitudes
of >150 μV. In our simulations, the bulk conductance is
identical in the intra- and extracellular spaces and corresponds
to experimentally determined values. The realistic magnitude
of the eAP occurs naturally, when a realistic structure of the
extracellular space is assumed. No assumptions of a hard-
to-define ‘effective’ extracellular resistance are necessary.
The eAP waveforms and amplitudes in figure 8 represent
measurements as they would be obtained by ideal point
electrodes. In other words, they are upper boundaries to the
signals that real electrodes with non-zero impedance and a
spatial extension would report. In principle, the electrodes
themselves could also be modeled in this tool, using zero-
flux BCs on the glass surface. Numerous other problems can
be addressed by simulations with this method: starting from
small geometries (e.g. in the study of depolarization of spines
of different morphology), all the way to very large systems
(e.g. in the cross-talk of local field potentials and electrical
activity of hundreds of tightly packed cells).

Several steps have already been taken to shorten the
computation time further. The structures of the software code
already allow run-time alteration of the time step. Simulation
of intrinsic neuronal activity will greatly benefit from this
adaptation scheme because currents and electric fields change
on timescales much larger than the cell time constant, which
is important mostly for the rapid fields imposed by neuro-
stimulation methods. What is needed is an automatic scheme
to choose the appropriate time step. Three timescales are
important. First, to ascertain numerical stability, the maximal
time step is limited by the membrane time constant (see the
stability discussion in appendix A.2.). Second, the time step
has to be approximately one order of magnitude smaller than
the timescale on which the ionic conductances change. For
sodium channels at physiological temperature, this requires
time steps of 10 μs or better. Third, to ascertain precision,
the change of the membrane potential has to be captured
accurately. For external stimulation of short cables, where the
time course of membrane potential changes is only limited by
the cell time constant, this can require picosecond time steps
(figure 4(D)). As the sum of ionic and membrane currents
drives changes in the membrane potential (7), we proposed
to use the magnitude of this sum membrane currents, as the
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criterion. Further tests are needed to establish whether this
approach is generally applicable.

This method was built from the beginning with parallelism
in mind and the software framework supports distributed
solution of linear systems and distributed meshes. Initial tests
have been performed and the most important aspect now is
the development of better partition algorithms for the main
mesh. It has to be automatically determined whether it is
preferred to partition a given cell membrane or rather to keep
as much as possible of the cell in a given parallel machine.
The greatest benefits from parallelization will obviously come
from the distribution of large meshes as the time evolution of
the problem is tightly coupled.
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Appendix

A.1. Space discretization

At any given moment, the membrane voltage Vm is assumed
fixed and the system of partial differential equations is solved
for variables Im and �e,i (denoted � when the domain is
indifferent). The classic weak FEM formulation is obtained
by multiplying equations (1) and (2) by test functions ve, vi,
integrating and applying Green’s first identity:∫

�e

σe∇�e · ∇ve dx −
∫

�

Imve ds =
∫

∂�N

INve ds +
∫

�e

ρeve dx,

(A.1)

∫
�i

σi∇�i · ∇vi dx +
∫

�

Imvi ds =
∫

�i

ρivi dx. (A.2)

In equation (A.2), the assumption that no cell is open to the
exterior boundary is made. The interface condition on � is
comparable to a Neumann condition, with the difference that
in this model, Im is an unknown, sub-dimensional function on
membrane space. Condition (5) is expressed in the weak form
as ∫

�

(�i − �e)u ds =
∫

�

Vmu ds, (A.3)

with u being a test function also restricted to membrane space.
Equation (A.3) can be understood as a special Dirichlet BC
where the values must comply with a fixed potential difference
Vm. The complete system of spatial equations is formed by
(A.3) and the sum of equations (A.1) and (A.2):∫

�

σ∇� · ∇v dx +
∫

�

Im[v]e,i ds =
∫

∂�N

INv ds +
∫

�

ρv dx.

(A.4)

Table A1. List of the main variables and constants of the model,
units used and rough absolute orders of magnitude for typical
neuronal cells.

Name Definition Unit Order

�e,i Extrac./Intrac. potential mV 100–101

Vm Membrane voltage mV 101–102

Im Current toward the membrane μA cm−2 101–104

Iion Trans-membrane ionic current μA cm−2 101

σe,i Extrac./Intrac. conductivity mS cm−1 101

Cm Membrane specific capacitance μF cm−2 100

Rm Membrane specific resistance � cm2 103–104

d Cell diameter cm 10−3

E Electric field mV cm−1 100–104

Table A2. Complete results with the three methods (Euler, CN and
ECN) for the convergence experiment in figures 3(A) and (B) with
the reference software. The time step used, the typical element size
(h), the method, computation duration in seconds and the NRMSD
to the analytic solution are shown. The extra duration of the CN is
explained by the extra restriction imposed to the solver to satisfy
values of In+1

m . Although ECN solves two linear systems at each
time step, the durations are similar compared to CN. This is
explained by the second solution of the linear system using the
potential calculated in the first solution as the initial guess in the
generalized minimal residual method.

�t h Method Duration NRMSD

50 ns 1 μm Eul. 5.78 s 4.40 %
1 μm CN 11.17 s 6.04 %
1 μm ECN 11.88 s 0.29 %

5 ns 0.5 μm Eul. 228.57 s 0.31 %
0.5 μm CN 591.67 s 0.68 %
0.5 μm ECN 610.22 s 0.15 %

0.5 ns 0.25 μm Eul. 11 053.0 s 0.05 %
0.25 μm CN 24 414.1 s 0.08 %
0.25 μm ECN 26 267.7 s 0.12 %

Here, σ,�, v represent the corresponding symbol in any of
the non-overlapping domains �e,i. In (A.4), the operator[ ]i,e

changes the sign of the operand according to the face � that is
being evaluated (integration is performed in the intracellular
and extracellular face of �).

The matrix form of the problem is obtained by choosing
a set of piecewise linear basis functions {v1, v2, . . . , vN�}
for each of the N� nodes in a triangulation �h, and
{u1, u2, . . . , uN� } for each of the N� nodes in a triangulation
�h. The result is a system of M = N� + N� equations:∫

�

σ∇� · ∇vi dx +
∫

�

Im[vi]e,i ds =
∫

�

ρvi dx i = 1, .., N�,

(A.5)

∫
�

uj[�]e,i ds =
∫

�

ujVm ds j = 1, .., N�. (A.6)

The Neumann term
∫
∂�N

INv ds was dropped but can be added
in any future step.

Let �k, Ij
m and V l

m be the approximations of values �(xk),
Im(xj) and Vm(xl ) at triangulation nodes xk ∈ �h, xj ∈ �h and
xl ∈ �h. The continuous functions can then be replaced by
� ≈ ∑N�

k=1 �kvk, Im ≈ ∑N�

j=1 Ij
muj and Vm ≈ ∑N�

l=1 V l
mul, and

the gradient by ∇� ≈ ∑N�

k=1 �k∇vk.
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Equations (A.5) and (A.6) for a given i and a given j are
now

σ
∑

k

�k
∫

�

∇vk · ∇vi dx +
∑

j

Ij
m

∫
�

uj[vi]i,e ds =
∫

�

ρvi dx,

(A.7)

∑
k

�k
∫

�

uj[vk]i,e ds =
∑

l

V l
m

∫
�

uluj ds. (A.8)

Left-hand side entries of the matrix linear system form can then
be defined as Aik = σ

∫
�

∇vk ·∇vi dx and Bij = ∫
�

uj[vi]i,e ds.
Right-hand side vector entries can be defined as f i = ∫

�
ρvi dx

and Gjl = ∫
�

uluj ds. The system of equations,
∑

k

�kAik +
∑

j

Il
mBij = f i (A.9)

∑
k

�kBjk =
∑

l

V l
mGjl, (A.10)

can be written in the matrix form as

Mu =
[

A B
BT 0

] [
�

Im

]
=

[
f

GVm

]
= b. (A.11)

Matrix equation (A.11) has to be solved to obtain the potential
� and membrane current Im at any time step.

Although the Laplacian A matrix is positive definite, in
general the matrix M is symmetric but indefinite. In [53],
a factorization procedure is presented which can produce
an equivalent positive-definite system after the elimination
of vector Im through static condensation. In that form, the
conjugate gradient method can be used to solve the linear
system. This form was used for the explicit Euler solver
presented in the next sections. Although the details of the
factorization in [53] will not be presented in this paper, we
will still motivate the expression for Im, as it is required for
the stability analysis. This expression can be readily extracted
from equation (A.11):

BIm = f − A�.

Due to symmetry between the membrane current expression
and the voltage potential expressions (note that the Im part of
(A.9) and the � part of (A.10) produce the same matrix B), and
a special node re-organization (nodes that touch the interface
are moved to the bottom of the matrix), a left pseudo-inverse
matrix WT can be constructed for B such that

Im = WT (f − A�). (A.12)

This expression depends only on �. Replaced back into
equation (A.11), a linear system exclusively in terms of �

can be obtained.

A.2. Stability of the numerical scheme

The explicit Euler form of the problem, although easily
implementable, is only conditionally stable. As presented in
section 2.3, a Crank–Nicolson (CN) scheme can be adapted to
the solving algorithm providing excellent results (figures 3 and
4). In this section, the strict stability requirements for the Euler
scheme and the more flexible CN requirements are shown.

The stability analysis for the general discretized version
of the problem (equations (A.7), (A.8), (8) and (9)) is complex
for two reasons: first, the piecewise nature of the problem
resulting from the membrane, and second, the separation of
the space and time equations in two steps. This results in a
situation, where actually the difference between potentials, the
membrane voltage, is the relevant parameter on the membrane,
while in the classic stability analysis of the diffusion equation,
it is the potential itself. The membrane is the place where local
source terms, the membrane currents, are much more likely to
cause instabilities than the solution of the Laplace or Poisson
equation. Therefore, we restrict our study to this area and
neglect possible variations in potentials of the non-membrane
nodes.

The problem was analyzed for a regular 2D triangulation
of typical element length h (figure A1(A)). At the membrane
interface, an expression for Im can be obtained and replaced
in (8) and (9). Beginning with (A.7), for a membrane node xj,
assuming no external current sources, and uj = 1, one obtains

σ
∑

k

�k
∫

�

∇vk · ∇vj dx + Ij
m

∫
�

[vj]i,e ds = 0. (A.13)

Note that uj = 1 is a common assumption in FEM
implementations of the Neumann BC. This assumption was
also used in the membrane test functions of the computer
solver. The membrane current at node xj can be calculated
from either the extracellular or intracellular potentials. With
the adjacent extracellular nodes, this value is

Ij
m = −σ

∑
k �k

e

∫
�

∇vk · ∇vi dx

− ∫
�

vi ds
. (A.14)

In the two-dimensional triangulation (figure A1(A)),
expansion and integration with the classic ‘hat’ test functions
in (A.14) produce for the extra- and intracellular parts:

I j
m = σ

h

(
2�j

e − 1

2
�j−1

e − 1

2
�j+1

e − �p
e

)
, (A.15)

− I j
m = σ

h

(
2�

j
i − 1

2
�

j−1
i − 1

2
�

j+1
i − �

q
i

)
. (A.16)

Subtracting (A.16) from (A.15) and employing the definition
of membrane voltage V j

m = �
j
i − �

j
e, one obtains

Ij
m = −σ

h

(
V j

m − 1

4
V j−1

m − 1

4
V j+1

m − 1

2
�

q
i + 1

2
�p

e

)
. (A.17)

As mentioned above at this point, the fluctuations of the
exterior values �

q
i ,�

p
e around the ‘true’ values are ignored.

In this case, the standard ansatz of the von Neumann stability
analysis can be used: a linear combination of periodic solutions
of the form

V j,n
m = ξ neiγ jh, (A.18)

with j, n being the space and time indexes, i the imaginary unit
and γ a variable wave number. The starting condition for Vm is
on average zero. This implies that potentials in the extra- and
intracellular regions of a region of membrane are on average
the same. For simplicity, we choose this value to be zero. Under
these conditions, potentials are allowed to fluctuate but only
at larger scales than the fluctuations of Vm. Inserting (A.17) in
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(A) (B)

(C)

(D)

Figure A1. Time-step restrictions depending on the typical element
size (h) for the basic Euler scheme. (A) Notation for the regular
triangulation used to find the stability conditions. The dashed
horizontal line represents the membrane. Index j goes along the
‘infinite’ membrane, while p and q are the nearest nodes to node j.
(B) Numerical results showing the critical time step for a 16 μm
cubic cell under a homogeneous electric field as h decreases. The
field was oriented normal to one of the faces; parameters are
identical to the ones in figure 5. Above the solid line, the numerical
solution was unstable. The cell was defined by regular tetrahedrons
of heights h = {8,4,2,1} μm. The dotted lines represent the stability
restriction for a regular grid (equation (A.20)) and alternatively how
an order h2 and h3 dependence would look like. Stability in 3D
shows h dependence. (C) Numerical results showing the critical
time step for a d = 20 μm and a d = 1 μm cells as h decreases.
Parameters were identical to figure 5. The cell meshes consisted of
irregular triangles generated with Gmsh’s MeshAdapt algorithm.
Dotted lines represent the time-step limit approximation for a regular
grid (equation (A.20)). Stability in 2D also shows h dependence. (D)
Same as (C) but for three spherical cells with diameters {20,5,1}
μm. The cells were formed by irregular tetrahedrons generated with
Gmsh’s Delaunay 3D algorithm. Although the parameter h was
conserved for the majority of tetrahedrons, the statistical analysis
showed that some of them had edges much shorter than the value
specified by the h parameter. This can explain the variations of the
20 and 5 μm traces. Depending on the tools used for meshing, the
quality of the mesh is critical for stability.

the Euler scheme (8) and using a passive membrane resistance
produces

V j,n+1
m = (1 − α − β)V j,n

m + β

4

(
V j−1,n

m + V j+1,n
m

)

α = �t

Cm

1

Rm
, β = σ�t

Cmh
. (A.19)

Replacing (A.18) into (A.19) leads to the amplification factor

ξE = 1 − α − β

2
− β sin2 γ h

2
.

Stability is obtained under the condition |ξE | � 1, which is
true for

�t � 2
1

RmCm
+ 3

2
σ

Cmh

.

In cell biology, it is usual thatCmh/σ 
 RmCm so the condition
can be approximated by

�t <
4Cmh

3σ
. (A.20)

This was tested in numerical experiments in 2D and 3D
(figures A1(B)–(D)). The factor 4/3 is not exact as we dropped
the contribution of the exterior values �

q
i ,�

p
e . Their influence

should be on the order of the other potential-difference terms
in (A.17) so that the result presented here is of the correct
order.

The restriction on the time step is laxer in the CN scheme.
Inserting (A.17) into the CN scheme (9) expands to(

1 + β

2

)
V j,n+1

m − β

8

(
V j−1,n+1

m + V j+1,n+1
m

)

=
(

1 − β

2
− α

)
V j,n

m + β

8

(
V j−1,n

m + V j+1,n
m

)

The use of (A.18) produces the amplification factor

ξCN = 1 − β

2

(
1
2 + sin2 γ h

2

) − α

1 + β

2

(
1
2 + sin2 γ h

2

) .

Adding −1 + β

2

(
1
2 + sin2 γ h

2

)
to the inequality −1 � ξCN � 1

gives

−β

(
1

2
+ sin2 γ h

2

)
� α � 2.

α and β are always positive, so the left inequality is always
true. The right part establishes that the stability limits are set
by the millisecond-scale membrane time constant τm = RmCm:

�t � 2τm.

A.3. 2D cell analytic solution

The analytic solution for the homogeneous stimulus of a 2D
cell was used to compute the reference solution in figures 2
and 3. The solution is known from [59, 18]. Potentials for a
circular cell of diameter d under a homogeneous step field E
starting at t = 0 are

�i(r, θ, t) = −a(t) · Er cos θ r < d/2

�e(r, θ, t) = −Er cos θ − b(t) · E
d2

4r
cos θ r > d/2

Vm(θ, t) = E d cos θ (1 − e− t
τ )(1 − ε).
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With

a(t) = 2σe

σi + σe
{e− t

τ + (1 − e− t
τ )ε}

b(t) = 1 − 2σi

σi + σe
{e− t

τ + (1 − e− t
τ )ε}

τ = 1
1

CmRm
+ 2σiσe

Cmd(σi+σe )

, ε = τ

CmRm
.
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