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In this paper, we discuss biological effects of electromagnetic (EM) fields in the context of cancer
biology. In particular, we review the nanomechanical properties of microtubules (MTs), the latter
being one of the most successful targets for cancer therapy. We propose an investigation on the
coupling of electromagnetic radiation to mechanical vibrations of MTs as an important basis for
biological and medical applications. In our opinion optomechanical methods can accurately monitor
and control the mechanical properties of isolated MTs in a liquid environment. Consequently,
studying nanomechanical properties of MTs may give useful information for future applications to
diagnostic and therapeutic technologies involving non-invasive externally applied physical fields. For
example, electromagnetic fields or high intensity ultrasound can be used therapeutically avoiding
harmful side effects of chemotherapeutic agents or classical radiation therapy.

I. INTRODUCTION

In spite of many efforts and important advances in
cancer diagnostics and treatment, there are still mil-
lions of people dying each year throughout the world
due to cancer, and the war on cancer that was declared
by the US President Richard Nixon in 1971 is still far
from being won 46 years later. Conversely, the can-
cer incidence will most probably increase further [1, 2]
while the progress in cancer treatments has been stag-
nant for decades [3, 4] with the exception of recent in-
troduction of immmunotherapies. We should mention,
however, that improvements in diagnostic imaging, es-
pecially using magnetic resonance imaging (MRI), and
novel surgery approaches have led to progress in the field
of oncology with improvements in clinical outcomes ac-
cruing gradually over the past few decades. The new
surgery techniques for example enable a better delin-
eation of the tumour area and the surrounding struc-
tures, allowing the medical oncologists to reduce the tu-
mor margin and hence decrease damage to the normal
tissue [5] leading to improved quality of life of the paten-
tients. However, truly cutting-edge technologies are still
to be discovered and implemented within the arsenal of
cancer therapy modalities. In particular, the roles of
biochemical signaling pathways, and biophysical aspects
(nanomechanical states of the cellular- and subcellular
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structures, endogenous bioelectric current/potential and
electromagnetic field) have not been fully understood and
exploited in the field of oncology [6, 7].
The aim of the present review article is to outline why it
is worthwhile to focus on biophysical aspects with regard
to future diagnosis and treatment approaches for cancer.
In particular, we discuss why the bioelectric and mechan-
ical properties of microtubules might play a significant
role in cancer, whose better understanding could lead to
the development of novel therapies. Biolectricity is a ba-
sic phenomenon associated with cellular and subcellular
structures [8–10]. Most of the subcellular biomolecules
(e.g. DNA, RNA, tubulin, actin, septin, etc.) are ei-
ther charged and hence surrounded by counter-ions or
endowed with high electric dipole moments that can ena-
gage in dipole-dipole interactions and polarize electrically
their local environment. Living organisms are replete
with both moving and oscillating electric charges and
can thus be regarded as complex electrochemical and
mechanical systems. Complex patterns of direct current
(DC) electric fields present within living organisms are
key factors in morphogenesis and contain part of the in-
formation needed to produce a three-dimensional organ-
ism [11]. These factors, in our opinion, need to be ad-
dressed when finding novel methods of cancer diagnosis
and treatment.
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II. ELECTROMAGNETIC FIELDS AFFECT
CANCER CELLS

It has been shown that extremely low-frequency
(ELF), pulsed electromagnetic fields (PEMF) and si-
nusoidal electromagnetic fields (SEMF) can induce tu-
mor cell apoptosis, inhibit angiogenesis, impede pro-
liferation of neoplastic cells, and cause necrosis non-
invasively, whereas human lymphocytes are negligibly af-
fected [12]. Some studies describe the effects of intense
(> 0.1 MV/m) nanosecond (10-300 ns) pulsed electric
fields on mammalian cell structure and function. As the
pulse durations decrease, effects on the plasma membrane
decrease and effects on intracellular signal transduction
mechanisms increase [13].

Low-power EMF within the range of 0.1-40 MHz may
impair the DNA strand and cause inhibition of prolifera-
tion of the gallbladder cancer cells, and these effects are
related to the frequency of the electromagnetic fields but
not in a linear fashion [14]. Kirson et al. [15] have re-
cently demonstrated that 100 KHz to 1 MHz AC fields
have significant specific effects on dividing cells. The ba-
sis of these effects during cytokinesis was hypothesized to
be the unidirectional dielectrophoretic forces induced by
the inhomogeneous fields at the cleavage furrow separat-
ing the daughter cells that interfere with the orientation
of spindle microtubules [16]. A review of other possible
mechanisms involved in the interactions of these fields,
dubbed TTFields (Tumor Treating Fields) and cancer
cells has been recently published [17]. It is worth noting
that in addtion to microtubules, actin filaments, DNA
and even ion channels may be affected by TTFields and
investigations into specific molecular mechanisms are on-
going. As an additional electromagnetic mechanism with
potential cancer treatment application, a study was un-
dertaken to examine whether millimeter electromagnetic
waves (MMWs) irradiation (42.2 GHz) can inhibit tu-
mor metastasis enhanced by cyclophosphamide (CPA),
an anticancer drug. [18].

Concerning high-power EMF, for example Elson (2009)
focused on the potential of strong magnetic fields to play
a role in cancer treatment. Results of this study show
that pulsed magnetic field (PMF) in combination with
ultraviolet C (UVC) have the ability to augment the cell
killing effects of UVC radiation. In addition, the effects
appear to be greater when PMF and UVC are applied
at the same time [19]. Mitochondria are well known to
play an important role in apoptosis. Steep pulsed electric
fields (SPEF) could induce apoptosis markedly (P-value
less than 0.01); SPEF with lower voltage (200V) and
longer width (1.3 µs) could induce apoptosis more effec-
tively than SPEF with higher voltage (600V) and shorter
width (100ns). These experimental results provide a pos-
sible mechanism and parameter selection basis for tumor
treatment using SPEF [20]. There are many reports of
enhanced transcription and replication in different cell
culture systems exposed to electromagnetic fields, and
reports of cytoreduction (necrosis and apoptosis) in tu-

mors transplanted into animals exposed to similar, often
much stronger electromagnetic fields, but where heating
is negligible. Although the mechanism of inducing apop-
tosis has not been characterized yet, one major candidate
for the initiation of such a process is the production of
numerous breaks in DNA, and the inhibition of DNA re-
pair processes, leading to the initiation of the apoptotic
(programmed cell death) process [19].

Interestingly, electromagnetic frequencies at which
cancer cells become sensitive appear to be tumor-specific
and hence treatment with tumor-specific frequencies is
feasible, well tolerated and may have biological efficacy
in patients with advanced cancer. A study that exam-
ined a total of 163 patients diagnosed with various types
of cancer has identified a total of 1524 distinct frequen-
cies ranging from 0.1 Hz to 114 kHz. Most frequencies
(57 to 92 percent) were specific for a single tumor. These
observations suggest that electromagnetic fields, which
are amplitude-modulated at tumor-specific frequencies,
do not act solely on tumors but may have wide-ranging
effects on tumor-host interactions, e.g. immune modula-
tion [21].

In vitro effects of electromagnetic fields appear to be
related to the type of electromagnetic field applied. It
has been shown that human osteoblasts display effects of
BEMER (Bio-Electro Magnetic Energy Regulation) type
electromagnetic field (BTEMF) on gene regulation. Ef-
fects of BTEMF on gene expression in human mesenchy-
mal stem cells and chondrocytes have been analyzed. Re-
sults indicate that BTEMF in human mesenchymal stem
cells and chondrocytes provide the first indications to
understanding therapeutic effects achieved with BTEMF
stimulation [22].

Phenotypic changes in human breast cancer cells fol-
lowing low-level magnetic field (MF) exposure previously
reported. Proteomic methods were used to investigate
the biochemical effect of MF exposure in SF767 human
glioma cells. Protein alterations were studied after expo-
sure to 1.2 microTesla (microT) MF [12 milliGauss (mG),
60 Hertz (Hz)]. The results suggest that the analysis of
differentially expressed proteins in SF767 cells may be
useful as biomarkers for biological changes caused by ex-
posure to magnetic fields [23].

Qutob et al. (2006) showed that there was no evidence
that non-thermal RF fields can affect gene expression in
cultured U87MG glioblastoma cells relative to the non-
irradiated control groups, whereas exposure to heat shock
at 43 degrees C for 1 h up-regulated a number of typical
stress-responsive genes in the positive control group [24].
Gap junction genes are recognized as tumor suppressors
[25–27] and effects on gap junctional communication also
provide an appealing model for explaining tumor growth
induced by exposure to weak magnetic fields. ELF ex-
posure generally does not transmit nearly enough energy
to cause mutagenesis of DNA, but has been shown to af-
fect gap junction states and thus potentially to control
proliferation and differentiation [28–30].

In the MHz region, several studies investigated the ef-
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fect of the application of electromagnetic field in the MHz
for cancer treatment. Normally, the intensity applied
was high, inducing thermal effects. That the choice of
the specific modulation of the EMF is important was
shown by Andocs et al. [31], demonstrating the the
application of modulated EMF (13.56 MHz) causes a
synergistically anticancer effect due to a hermal and a
non-thermal mechanism triggered (modulated electrohy-
perthermia). Subsequent work showed that this treat-
ment causes DNA-fragmentation [32] and up-regulation
of heat-shock proteins [33] in the cancer cells. The supe-
riority of using 13.56 MHz modulated electrohyperther-
mia in comparison to only classical hyperthermia to treat
cancer was demonstrated recently [34].

In the GHz range, most of the studies used strong GHZ
EMF for treating tumors by induce thermal effects [35–
37]. However, EMF in the GHz range can also act as
a co-cancerogen [38, 39], making the application of GHz
EMF for cancer treatment not as an optimal approach.

Terahertz (THz) radiation occupies a broad band of
the EM spectrum between microwave and infrared fre-
quencies, and is therefore non-ionizing. The THz region
covers the frequency range from 0.1 to 10 THz and it of-
fers non-invasive diagnostic capabilities that fill the gaps
between x-rays, MRI, and the isible range [40]. Ap-
plications of THz waves to the diagnosis of melanoma
[41], basal cell carcinoma [42], and breast cancer [43–45]
have already been demonstrated. THz technology has led
to the development of commercially available diagnostic
medical applications such as THz Pulsed Spectroscopy
[43] and THz Pulsed Imaging [44, 46], which offer excel-
lent contrast between diseased and healthy tissues. The
first clinical trials of THz imaging as an intra-operative
tool during cancer surgery are underway [47]. Studies
on stem cells suggest that exposure to broad-spectrum
THz pulses affects cell differentiation and gene expression
[48, 49] at both the transcript and protein levels. The
mechanism by which THz radiation interacts with biolog-
ical systems is fundamentally different to that of conven-
tional ionizing therapies, due to its resonant effects on cell
membranes [50], proteins [51] and nucleic acids [52–54].
It has been recently demonstrated that intense, picosec-
ond THz pulses induce changes in cellular functions[55–
58]. Exposure of human tissue to intense THz pulses
was found to activate the DNA damage response (DDR),
and affect expression levels of many proteins, especially
cell-cycle regulatory proteins offering a potential for ther-
apeutic applications of this novel modality. In addi-
tion, a combination of this modality can be considered
with standard chemotherapy since sub-µs pulsed electric
fields applied to tumours through electrodes have been
shown to permeabilize tumour cell membranes to cyto-
toxic agents[59–61]. Consequently, intense THz pulses
may significantly lower the required therapeutic doses of
cytotoxic drugs. However, the fundamental mechanisms
of interaction of THz radiation with biological systems
so far remain elusive.

III. MICROTUBULES

It is well known that MTs, microfilaments and inter-
mediate filaments are the main components of cytoskele-
ton of eukaryotic cells. MTs are the most rigid protein
polymer among the three types of cytoskeletal filaments,
which form the architecture of the cell. They exhibit
unique physical behaviour and form special structures
well suited for their own cellular functions [62]. The
structure of MTs is cylindrical, and it typically involves
13 parallel protofilaments, which are connected laterally
into hollow tubes. MTs have 25 nm external and 15 nm
internal diameters. The length of MTs can vary from
tens of nanometers to hundreds of microns [63]. MT bi-
ological functions rely on two essential properties. First,
they are dynamic polymers that are assembled and dis-
assembled rapidly in a fashion coordinated with motile
reactions; second, they are relatively rigid structures able
to resist the pico-Newton level forces exerted by kinesin
and dynein motor proteins, and they provide the required
mechanical stiffness for cilia and flagella [64].

Mechanical properties of MTs largely determine their
functions. Quantifying the way they resist mechani-
cal deformation by determining their Young’s and shear
modulus can lead to a better understanding of all the vi-
tal physiological mechanisms in which MTs are involved.
For instance, it would be favorable for the stable MTs
of the axon to be stiff and straight to support the ex-
tended structure required for long-distance axonal trans-
port. Conversely, MTs in a proliferating cell should be
dynamic and flexible to enable rapid redistribution dur-
ing transitions between interphase and mitosis [65].

However, measuring and understanding MTs’ mechan-
ical properties is not a simple task. Two decades of
measurements involving different techniques such as op-
tical tweezers [66], hydrodynamic flow [64], atomic force
microscope (AFM) [67, 68], and persistence length ob-
servations [69], resulted in values of elastic (shear and
Young’s) modulus spanning a range of values between 1
MPa and 7 GPa [70]. For instance, experiments involv-
ing the MTs with lengths 24-68 nm yielding a value of
2 GPa for MTs assembled from pure bovine-brain tubu-
lin [71]. Short MTs are flexible due to a low value of
the shear modulus while longer tubes become more rigid,
which is when the Young’s modulus dominates the me-
chanical behaviour. Measurements on longer MTs would
therefore provide better estimates of the Young’s mod-
ulus, because neglecting the influence of shearing would
introduce a smaller error.

Since microtubules in biological conditions are often
subject to a dynamic load, vibration analysis suggests
itself as a method to study their dynamic response. Vi-
bration normal modes describe the preferential pattern
of structural dynamics of a microtubule, whereby its re-
sponse to a time-varying force can be represented by a
combination of these vibration modes. In addition, there
are several hypotheses that ascribe biological relevance
to the vibrations themselves. Furthermore, microtubule
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vibration mode patterns are reminiscent to buckling pat-
tern, so the underlying mathematical apparatus is similar
[63].

There are generally two modeling approaches that have
been developed to study microtubule mechanics and vi-
brations. A continuum mechanics model [72–79] and a
discrete model [80–82]. The gap between high-precision
molecular modeling and continuum modeling can be
bridged by an atomistic-continuum model; the first of
such models to study the topic herein was presented by
Liew et al. [83, 84].

These theoretical treatments of the microtubule struc-
ture disclose their vibrational normal modes in a wide
frequency range from acoustic to GHz frequencies [70,
72, 77, 82, 85, 86]. For instance It has been shown
that the microtubule lengths L in terms of their fun-
damental bending mechanical resonance frequencies be-
tween 100 and 200 kHz in vitro (20 ◦C) [87]. Elastic
wave propagation in MTs was analyzed in different works
[72, 77, 85]. Dependence of frequency or velocity of prop-
agation on the wave vector was evaluated for isotropic
and orthotropic shell models with different parameters.
In particular, the resonant condition for a 10 nm long MT
corresponding to half of the wavelength at a frequency of
about 460 MHz may occur for longitudinal oscillations
with Young’s modulus 1.7-2 GPa. These results hold
for the orthotropic microtubule axisymmetric (n = 0)
and nonaxisymmetric (n = 1) shell models [72, 77, 88].
Numerical calculations based on recently obtained ex-
perimental data for Young’s modulus of MT, show that
MT-water system supports interface elastic waves with
maximal frequencies in a GHz range. In fact, [72] per-
formed theoretical analysis for elastic vibrations of MT
immersed in water and found that this system supports
nonradiative elastic waves localised in the vicinity of the
MT wall with maximal frequencies of order of tens of
GHz. In the long wavelength limit, there exist three ax-
isymmetric acoustic waves with propagation speed of ap-
proximately 200-600 m/s and an infinite set of helical
waves with a parabolic dispersion law [72].

The role of mechanical vibrations of MT is not known
in biology so far [86]. The fundamental issue for any bio-
logical relevance of MT vibrations or further phenomena
assuming MT vibrations is the damping of MT vibra-
tions. It is generally considered that protein and MT nor-
mal mode vibrations are overdamped [89]. Some works
estimate that, depending on the type of the vibration
mode and lowered coupling with the MT viscous envi-
ronment, the quality factor Q of the vibration modes
may be in the range of 0.01 - 10 [86], hence reaching to
underdamped regime. However, there are no solid exper-
imental data on the damping of MT vibrations so far,
only extensive theoretical works.

Tubulin, a MT subunit, is a protein which has rather
high charge and dipole moment compared to most other
proteins [90]. Hence, it is natural to suggest that MT
vibrations, if underdamped and excited, will be accom-
panied by an electrical field of the same frequency as

was originally proposed by Pokorný et al. [91]. Sev-
eral recent works developed this idea [92, 93] including
electromechanical vibrational models of whole cell micro-
tubule network [94, 95] and multi-mode vibration of sin-
gle microtubule [96]. Charge and dipole moment of MT
as well as of tubulin, other proteins and polar nanoob-
jects in general is also a key to coupling external electro-
magnetic field to vibrations of such objects; the coupling
is significant only when vibrations are sufficiently under-
damped [97]. Single protein normal vibration modes are
in the range of cca. 0.03–3 THz [98–100] together with
MT vibration band (kHz - GHz) can hypothetically en-
able interaction with electromagnetic field at frequencies
across many orders of magnitude.
It was hypothesized that vibrations of MT cytoskeleton
generate coherent electromagnetic field which plays role
in organization of processes in living cells and that this
field is perturbed in cancer [101]. Within this hypothe-
sis it is considered that the damping of MT vibrations is
caused by the ambient medium, i.e., by the cytosol water.
It is proposed that in cancer the changes in mitochon-
drial metabolism lead to change of the water structure
around MT and to increased damping of Mt vibrations
might cause a shift in the resonance frequency of oscil-
lations in cells. Frequency changes in cancer cells were
also predicted by Fröhlich [102]. A peculiar cancer diag-
nostic method developed by Vedruccio [103] claimed to
exploit frequency selective effects of the interaction of the
external electromagnetic field with cancer cells was inter-
preted using this hypothesis. Hypotheses of Pokorný and
Fröhlich also inspired a number of experimental works
aiming to directly electronically detect electromagnetic
activity of living cells in radiofrequency and microwave
bands [104–106]. However, solid evidence for such cellu-
lar electromagnetic activity remains elusive [107]. How-
ever, unless the possibility of underdamped MT vibra-
tions and endogenous excitation is proved, these hypothe-
ses of highly coherent biological electromagnetic field re-
main unrealistic. One important piece of puzzle could
be brought by elucidation of one of the crucial assump-
tions in these hypotheses: low damping of microtubule
vibrations. Knowledge of dynamic mechanical proper-
ties is also essential to assess effects of ns intense electric
pulses which have been demonstrated to affect cytoskele-
ton [108], thus opening a new avenue how to disrupt cell
divison with potential cancer applications. However, ex-
act mechanisms of action remains unclear. Thus, to en-
able new perspective diagnostic and therapeutic methods
based on MT monitoring and manipulation, a rigorous
experimental analysis of microtubule vibrations and dy-
namic mechanical properties is needed.
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FIG. 1. Top view of the optomechanical setup for monitoring
mechanical vibrations in microtubules

IV. MONITORING MECHANICAL
VIBRATIONS OF MICROTUBULES VIA

OPTOMECHANICAL COUPLING

The emerging field of optomechanics is concerned with
the study of the mechanical effects of light on mesoscopic
and macroscopic mechanical oscillators. These phenom-
ena have been realized in optomechanical systems con-
sisting of an optical cavity with a movable end-mirror
or with a membrane-in-the middle. The radiation pres-
sure exerted by the light inside the optical cavity cou-
ples the moving mirror or the membrane which acts as a
mechanical oscillator to the optical field. This optome-
chanical coupling has been employed for a wide range of
applications such as the cavity cooling of microlevers and
nanomechanical resonators to their quantum mechanical
ground state [109–113], producing high precision detec-
tors for measuring weak forces and small displacements
and also for fundamental studies of the transition be-
tween the quantum and the classical world [110, 114–
122].

Optomechanical systems can also be applied for
the sensitive detection of physical quantities such as
spin [123, 124], atomic/molecular mass [125–127], the
concentration of biologically relevant molecules [128],
and thermal fluctuations [129–131], as well as for fre-
quency conversion [132–136]. Nanomechanical res-
onators (NMRs) with resonance frequencies in the GHz
regime can be now fabricated [30, 117, 137, 138] and they
are suitable candidates for the study of the quantum be-
havior at the mesoscopic scale [117, 138, 139]. These
GHz NMRs are characterized by reduced dimensions and
therefore by very low masses, and at the same time,
in this regime the nonlinear behavior of the mechani-
cal systems becomes more relevant, consequently offering
interesting theoretical [140–147] and experimental chal-
lenges [148–150]. These high-frequency resonators oper-
ating in the nonlinear regime open up new possibilities
for the realization of novel devices and applications of
NMR and nanoelectromechanical systems [151, 152].

The optomechanical system can also be employed to

FIG. 2. Side view of the optomechanical setup for monitoring
mechanical vibrations in microtubules

observe the vibrations of isolated microtubules [153]. In-
formation about the microtubule mechanical vibrations
can be obtained by coupling the microtubule to an opti-
cal cavity. In fact, the optomechanical coupling between
the microtubule and the optical field of the cavity modi-
fies the response of the cavity field results in appearance
of electromagnetically induced transparency peaks in the
transmission feature of the optical probe field. The cen-
ter frequency and linewidth of the transparency peak give
the resonance frequency and damping rate of the vibra-
tional mode of the microtubule. By properly selecting the
parameters of the system, one can observe up to 1GHz
vibration for the microtubule. The dielectric properties
of the microtubule, however, raises the possibility to con-
trol the vibration of the microtubule by positioning tip
electrodes close to surface of the microtubule. Applying
voltage on the electrode plates creates an effective ex-
ternal force on the microtubule, modifies the resonance
frequency of the microtubule vibration [153].

V. SUMMARY

Microtubules, key structures forming the cellular skele-
ton, have been among the most successful targets for an-
ticancer therapy. Any interference with their functioning,
especially during mitosis, can control the replication of
a cancer cell. However, chemotherapeutic techniques to
disrupt microtubules have several side effects on healthy
cells, making chemotherapy a less than ideal modality
to suppress cancer proliferation. It has been predicted
that the mechanical properties of microtubules (such as
their vibration frequencies) are different in cancer cells
compared to healthy cells. Inspired by this, we believe
that cancer treatment (and detection) may be possible
based on the detection and control of microtubule me-
chanical vibrations in cells exposed to non-invasive exter-
nal radiations (e.g. electromagnetic or ultrasound). We
have proposed an optomechanical method to control and
read out the vibrations of an isolated microtubule. This
can help determine which frequencies can cause break-
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age in microtubules of cancer cells using resonance ef-
fects in microtubules from an external field. Moreover,
this method may help to recognize cancer cells based on
special frequencies in microtubules. So far, measuring a
broad spectrum of mechanical vibrations of microtubules
has not been an easy task, and there are only a small
number of studies in this context. In order to improve
our knowledge about the mechanical vibrations of micro-
tubules, we proposed an optomechanical technique for
measurement of microtubule dynamics at room temper-
ature. Our approach is a step forward for monitoring
mechanical frequencies of microtubules in a broad spec-
tral range for a potential application in medical diagno-
sis and treatment. This may help scientists in the future
to supplement standard cancer chemo- and radiotherapy
approaches with non-ionizing physical fields to be used
as therapeutic and possibly even diagnostic methods.

It is a great goal to reach simple and non-invasive
methods for diagnosis and treatment of diseases like can-
cer. We have proposed that an optomechanical setup
can help us to monitor the all possible vibrations in a
MT in vitro for a potential application in cancer diagno-
sis and treatment. In fact, if we know what frequency

can destruct the MT structure it can be useful for cancer
treatment since cancer cells need MTs for cell division
and if they are disrupted or destroyed their growth can
be stopped or tumor can be vanished. This type of dis-
ruption can be done via an external weak EM signal or
an ultrasound signal which can be focused on the cancer-
ous cells in vivo and their growth can be controlled by
these external signals with special frequencies.
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