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A B S T R A C T

Examples from living systems at various levels of the biological hierarchy and also from natural food products
show that ultra-weak photon emission (UPE) has potential applications in the rating of vital functions and
quality testing. In this study, the UPE of chicken eggs has been tested regarding the possibility of egg
quality verification. The UPE from intact eggs and separated egg parts were subjected to supervised and
unsupervised classification methods according to different housing types. The results of unsupervised egg
grouping substantially agreed with the types of hen rearing. The Cohen’s Kappa test score for the K-means
method was up to 𝐾 = 0.63. Supervised Support Vector Machine (SVM) classifier with radial kernel function
achieved a relatively high accuracy (AC), up to 88%, also confirmed by the value of the K-statistics up to 0.81.
This study shows that the best result of egg types classification can be obtained using UPE emission data from
all egg parts.
1. Introduction

Chicken eggs are a staple food product, famous for their nutritional
value and versatility. They are considered to be the perfect food due to
their multi-functional properties. For economic and health reasons, it
is crucial to inspect the quality of eggs.

There is much evidence in the literature that the yield and quality
of eggs differ depending on the housing environments of the hens (Nain
et al., 2012; Özbey & Esen, 2007). It was noted higher egg quality
in domestic conditions than in conventional cages (Meng et al., 2014;
Yenice et al., 2016) However, differences in the nutritional content
of eggs produced using different farming techniques are not clearly
delineated and challenging to identify.

The nutritional composition of eggs varies and depends on many
factors, including the method of hen breeding, especially feed compo-
sition and access to herbaceous plants (the so-called green fodder) (Mc-
Namara, 2010; Nain et al., 2012; Özbey & Esen, 2007). Nowadays, it is
relatively easy to modify the composition of the egg, especially the fatty
acid content of the yolk, for example, by administering appropriate
components to the laying hens in the feed. As a result, the level of
certain ingredients can be significantly increased. It is often the case on
organic farms, where laying hens have a much more varied ecological
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nutrition, with access to green fodder, many vegetables, herbs, and
the possibility of natural supplementation with minerals in the diet
(including digging in the ground, green forage, free-range) (McNamara,
2010; Yannakopoulos, 2007).

Traditional egg quality assessment methods, based on chemical
analysis, are time-consuming and unsuitable for widespread use. There-
fore, a faster method, which could be automated, would be an alterna-
tive to the possibility of assessing eggs already in the production pro-
cess. Recent studies have shown that optical methods effectively eval-
uate egg quality and freshness (Brasil et al., 2022; Cruz-Tirado et al.,
2021; Yao et al., 2022). These are mainly methods based on the spectral
analysis of eggs, also operating in the near-infrared (NIR) range. Several
authors have shown that by measuring the ultra-weak photon emission
(UPE) from egg yolks, eggs can be differentiated regarding farming
type (Grashorn & Egerer, 2007; Köhler, 2001; Köhler et al., 1991).
Higher levels of photon emission may indicate higher-quality organic
components resulting from better breeding conditions.

Ultra-weak photon emission is called ultra-weak luminescence
(UWL) and delayed luminescence (DL). The term ‘biophotons’ is also
commonly used, reflecting this phenomenon’s nature. UPE is associated
vailable online 18 October 2023
957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.eswa.2023.122130
Received 30 January 2023; Received in revised form 2 October 2023; Accepted 10
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

October 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:joanna.sekulska-nalewajko@p.lodz.pl
mailto:jaroslaw.goclawski@p.lodz.pl
mailto:ewa.korzeniewska@p.lodz.pl
mailto:pawel.kielbasa@urk.edu.pl
mailto:tomasz.drozdz@office.urk.edu.pl
https://doi.org/10.1016/j.eswa.2023.122130
https://doi.org/10.1016/j.eswa.2023.122130
http://creativecommons.org/licenses/by/4.0/


Expert Systems With Applications 238 (2024) 122130J. Sekulska-Nalewajko et al.

i
n
(

r
s
c
N
0
f
u
w
w
o
h
b
t
o
m

p
e
c
e

2

s
u
o
e
P
t
H
H
w
v
r
t
1
g
m
m
t
t

n
B
a
c
e
t
t
p
T

primarily with the vital functions and biological activity of living
organisms under normal conditions. All living systems constantly emit
tiny amounts of photons per time unit, which can be detected only
using sensitive photoelectron multipliers (Ruth & Popp, 1976). Ultra-
weak luminescence is invisible to the human eye (in the range of
visible light) because the number of photons emitted lies far below
the absolute threshold for the energetic sensitivity of retinal cells,
i.e. 10–103 photons per cm2∕s (Kobayashi, 2003). Photon emission
s detected as non-thermal radiation, occurring in the electromag-
etic spectrum in the range from near-ultraviolet to the visible region
100–800 nm) (Beloussov, 2003; Popp, 1992, 2003), and possibly reach-

ing the near-infrared region (801–1300 nm) (Cifra & Pospišil, 2014).
This radiation is also associated with dimol and monomol photon
emission of 1O2 in the infrared (≈1300 nm) area of the spectrum.

Ultra-weak luminescence can be expected in all biological sys-
tems in which biomacromolecules are available due to active re-
dox/radical processes, passive oxidation by environmental oxidants,
or the metabolic activity of microbial infestation in plant and animal
products. This set of possible oxidative pathways makes UPE useful for
examining food quality, including milk, rice, and bean sprouts (Iida
et al., 2002). With food, UPE is used mainly to analyse the oxidation
balance of organic components (Lambing, 1992).

Computer artificial classifiers have recently been studied inten-
sively to support human decision-making for agricultural product qual-
ity (Nouri-Ahmadabadi et al., 2017). Eggs are also of interest in this
type of classification. Mehdizadeh et al. (2014) used an artificial neural
network (ANN) to build an intelligent system for chicken egg quality
ranking based on intact egg visible–infrared transmittance. It is also an
example of one of those studies that try to find a way to test egg quality
non-invasive by spectroscopic techniques (Kemps et al., 2006; Liu et al.,
2007).

In recent years, NIR spectroscopy data processed by machine learn-
ing methods have been successfully used for the prediction of eggs’
quality (Brasil et al., 2022; Cruz-Tirado et al., 2021). In those studies,
the classifications type Partial Least Squares Discriminant Analysis
(PLS-DA), Support Vector Machine with Cost (SVM-C), K-means, or
regressions type PLS-R or SVM-R were implemented to predict stale and
fresh eggs. Sehirli and Arslan (2022) determined egg quality in haugh
units (HU) based on 20 mechanical features of the egg parts (white,
yolk, shell) and also a chicken label, genotype, colour, and family,
based on a variety of prediction methods. Computer classifications were
also applied to help egg fertility detection during incubation based on
the detection of embryo presence. Such studies have been carried out
for several years at the Universitas Pembangunan Nasional Veteran Yo-
gykarta (Saifullah, 2020, 2021; Saifullah & Drezewski, 2022; Saifullah
et al., 2022; Saifullah & Suryotomo, 2021). In these research both K-
means segmentation and SVM classification were used for statistical
features of egg images based on Gray Level Co-occurrence (GLCM)
matrix — similar to those of Haralick et al. (1973).

This work presents the UPE application in an eggs type verification
using unsupervised and supervised classifiers. The considered types
of eggs relate to the method of laying hens breeding, and they are
cage, free-range and organic breeding. Understanding the mechanism
of ultra-weak photon emission from eggs and egg parts and quantifying
its intensity, spatial and temporal distribution, and dependencies on
internal biological activity and/or environmental conditions will help
establish proper assumptions for UPE measurements and enable its
application to egg quality assessment.

2. Materials and methods

2.1. Egg samples

All tested eggs, regardless of the type of hen rearing (cage, free-
range, organic), were derived from the Rhode Island Red hen breed
(R-11). The tested eggs came from farms located in one region of South
2
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Poland (Małopolska/near the city of Krakow) and were obtained at
the turn of August and September. The eggs came from three farms
with different rearing systems in line with the Commission Regulation.
One-third of the eggs came from hens from a cage farm with access
to artificial light. The next part of the eggs came from a farm with
free-range walking in accordance with Art. 4 of Council Directive
1999/74/EC 4. The third part of the eggs came from an organic farm,
ensuring strictly defined animal welfare (higher than conventional
breeding) considering the maintenance conditions and proper manure
management. The ecological farm was provided with the right number
of hens, appropriate bedding (straw, shavings, 1/3 of the solid surface),
feeders and drinkers (with permanent access), room microclimate, ven-
tilation, natural and artificial lighting (15–20 lx for 16 h), 8-hour night
est (without lighting) and runs. The method of feeding hens in the cage
ystem and from free-range was based on the same feed containing:
orn, wheat, triticale, soybean meal, sunflower meal, fodder chalk,
aCl, 1-Ca phosphate, DL-Methionine, L-Lysine, Phytase, NEU-SOL,
.5% premix, sodium bicarbonate, grindazim, aromabiotic. However,
ree-range hens had access to the enclosure (following Commission Reg-
lation (EC) No 589/2008, Art. 4 of Council Directive 1999/74/EC 4),
hich was mostly covered with vegetation. Organic hens were fed
ith ecological mixtures of cereals, including wheat, triticale, corn, and
rganic root crops: potatoes, beetroots, and fodder carrots. Nettle and
erbs, dried small-seed legumes, oilseeds, linseed up to 10%, and broad
ean lupins were also used in the nutrition of laying hens. In addition,
he laying hens also had access to ecological forage and the possibility
f digging in the ground, where they met the demand for many needed
inerals.

From each farm, 50 eggs were taken for further testing and com-
arative analysis of UPE. The average weights of the randomly selected
ggs produced in the three systems were 56.7 g, 59.0 g, and 54.3 g, for
aged, free-range, and organic eggs, respectively. The total number of
ggs used in the analysis was 150.

.2. UPE measurement

Measurements of emitted photons were made for intact eggs and
eparated yolks, albumen, and eggshells. The research was carried out
sing a proprietary measurement system, which enables the registration
f photons emitted from the tested organic samples. The measurement
quipment, presented in Fig. 1, works in an accredited laboratory under
olish Centre for Accreditation procedures (Polish Centre for Accredi-
ation, 2020). The photon emission from eggs was measured using the
AMAMATSU type R4220 photomultiplier (Hamamatsu Photonics KK,
amamatsu, Japan). It allows the analysis of electromagnetic waves
ith lengths ranging from 185 to 710 nm. The magnitude of the electric
oltage controlling the gain of the photomultiplier was adjustable in the
ange from 300 V to 1500 V, where the adjustment step was 1 V. For
hat purpose power supply unit of high voltage (PSU HV) and SDS HT
400 voltage regulator were used. National Instruments’ LabView2015
raphical programming environment connected with the NI myDAQ
easurement board acquiring photon data was used to control the
easurement system. Time-Correlated Single Photon Counting (TCSPC)

echnique (Crockett et al., 2022; Wu & Hsueh, 2022) was applied for
he recording of infrared decay.

Before the measurement of UPE, the eggs were washed under run-
ing water and dried at room temperature and atmospheric pressure.
efore the experiments, each sample was placed in lightproof pack-
ging and stored at 7–10 ◦ C for 24 h to maintain the same lighting
onditions for all eggs and reduce the differences in the degree of
xposure to the light during storage. The preparation time, between
aking the sample from the refrigeration chamber and depressurising
he lightproof packaging, did not exceed 30 min. An egg sample was
laced in a measuring chamber thermally stabilised during the tests.
he measurement process was carried out in a thermally stabilised

oom that eliminates solar radiation. Individual photons were counted
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Fig. 1. Block diagram of author’s photon emission measurement system based on a
specially designed chamber with a photomultiplier detecting photons. LabVIEW 2015
— a graphical programming environment created by National Instruments, NI myDAQ
— National Instruments measurement card of the photomultiplier signal, PSU HV —
high voltage power supply unit, SDS HT 1400 — voltage regulator.

over an experimentally specified time interval to determine total ultra-
weak photon emission. The minimum time for holding the sample in
the lightproof chamber was assumed to be when the difference in the
number of counted photons in two consecutive one-minute intervals
was less than 10%. UPE was calculated as the absolute difference
between the number of photons registered by the photomultiplier in
the chamber with material (A) and the number of photons registered
by the photomultiplier in the lightproof chamber without material (B),
according to the formula L = A − B, where L is the number of photons
emitted by the tested sample. Calibration of the sensors was carried
out on each day of the measurements. Stabilisation of the system was
performed to prevent disturbances resulting from temporary destabil-
isation of the standard conditions. This was the first phase of the
measurement process, which lasted 120 s. Photon emission was then
measured over time 600 s with a sampling rate of 4 Hz.

The ultra-weak luminescence measurement procedure was per-
formed for whole eggs, and then, for the same samples, the measure-
ment was performed for the separated egg components, such as white,
yolk, and shell.

2.3. Data preprocessing

The dataframe contained 𝑛𝑓 = 4 features represented by the num-
bers of biophotons emitted from 𝑛𝑠 = 150 egg samples. The considered
features were UPE from an intact egg and UPE from separated egg
components — white, yolk, and shell. Initially, data outliers were
removed by the capping method (Hodge & Austin, 2004; Mahmood,
2022), which uses sample mean and standard deviation values of a
feature.
𝑥′𝑖 = 𝑥𝑖

[

(𝑥𝑖 > 𝑢𝑖 − 3𝑠𝑖) ∧ (𝑥𝑖 < 𝑢𝑖 + 3𝑠𝑖)
]

,

𝑖 = 1,… , 𝑛𝑓
(1)

where 𝑢𝑖 and 𝑠𝑖 denote the mean and standard deviation, respectively,
of the values from the feature sample vector 𝑥𝑖. The lower and upper
bound of the outliers were obtained by subtracting and adding three
standard deviations to the mean as shown in Eq. (1). The whole
3

sample row including the feature outlier was removed. The process was
repeated for the sequence of feature columns until no more sample rows
were deleted.

The data of each feature was independently centred and scaled
according to the rule in Eq. (2) (Juszczak et al., 2002; Scikit-learn
developers, 2022d).

𝑥′𝑖 =
𝑥𝑖 − 𝑢𝑖

𝑠𝑖
, 𝑖 = 1,… , 𝑛𝑓 (2)

where 𝑥𝑖 is the feature column vector, 𝑢𝑖 and 𝑠𝑖 are the sample mean
and standard deviation, respectively, calculated in the set of 𝑛𝑠 rows.

2.4. Egg classification

Different classifiers have been proposed for grading agricultural
products including Support Vector Machine (SVM), Artificial Neural
Network, Decision Tree, Random Forest, Bayesian Network, etc. In
this paper, SVM was chosen for egg classification for its simplicity
and based on the recommendation to use this technique for biological
systems (Noble, 2006). It is also one of the most robust prediction
methods based on the Vapnik–Chervonenkis theory (Cortes & Vapnik,
1995; Vapnik, 2000), which can perform both linear and nonlinear
classification for the tested egg classes: caged, organic, and free-range.
The robustness allows us to avoid overfitting. Moreover, SVM provides
significant accuracy, is fast and is memory efficient for the tested
dataset of several hundred items with four features, which can be
considered rather small.

The decision function 𝑓 of two class SVM classifier is obtained
through the minimisation of the following expression:

𝑚𝑖𝑛
𝑓

[

𝐶
𝑛𝑆
∑

𝑖=1
𝑚𝑎𝑥

(

0, 1 − 𝑦𝑖𝑓 (𝑥𝑖)
)

+ ‖𝑓‖2
]

, (3)

where {𝑥𝑖, 𝑦𝑖}, 𝑖 = 1,… , 𝑛𝑆 , represents the dataset of photon emission
samples 𝑥𝑖 ∈ R and their associated class 𝑦𝑖, 𝐶 is a regularisation pa-
rameter balancing the data fitting (left expression component) and the
regularisation (right component). The multiclass classification problem
is solved by decomposing it into multiple binary classification prob-
lems. In the original SVM version, the decision function is a hyperplane
as in Eq. (4).

𝑓 (𝑥) = 𝑤𝑇 𝑥 − 𝑏, (4)

where 𝑤 is the plane orthogonal vector and 𝑏 the vector constant. One
of the strengths of SVM is its ability to choose a complex representa-
tion of the data thanks to using a kernel function that measures the
similarity between samples. Eq. (5) shows the decision function using
the Gaussian kernel 𝐾(𝑥, 𝑥′) (also known as the Radial Basis Function
(RBF)) providing a nonlinear separation surface between each class and
the rest of them.

𝑓 (𝑥) =
𝑛𝑆
∑

𝑖=1
𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖), where

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝛾‖𝑥 − 𝑥′‖2),

(5)

where 𝛼 > 0 is the Lagrange multiplier vector, ‖𝑥 − 𝑥′‖2 is the squared
Euclidean distance between the two feature vectors, and 𝛾 denotes a
parameter that controls the width of the Gaussian curve.

To check the tendency to clustering of egg samples based on mea-
sured photon emissions K-means method (Lloyd, 1982) has been ap-
plied. It relies on minimising the pairwise squared deviations of points
in the same cluster as given in Eq. (6)

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑆

𝑛𝐶
∑

𝑖=1

1
|𝑆𝑖|

∑

𝑥,𝑦∈𝑆𝑖

‖𝑥 − 𝑦‖2, (6)

where 𝑥, 𝑦 are different points from the same cluster 𝑆𝑖 ∈ 𝑆, 𝑛𝐶 is the
assumed number of clusters. All types of discussed classifiers have been
implemented in the Python environment. For the purpose of linear SVM



Expert Systems With Applications 238 (2024) 122130J. Sekulska-Nalewajko et al.
Fig. 2. Validation accuracy heatmap of SVM parameters (gamma, C) from Eq. (8)
shown in quasi-logarithmic scale.

classification of egg types, the class 𝑠𝑘𝑙𝑒𝑎𝑟𝑛.𝑠𝑣𝑚.𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑉 𝐶 has been
used (Scikit-learn developers, 2022b). The class constructor shown
in Eq. (7) has been called with 3 named parameters to fine-tune.

𝑠𝑣𝑐 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑉 𝐶(𝐶, 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡, 𝑡𝑜𝑙), (7)

where 𝑠𝑣𝑐 denotes the classifier object, 𝐶 = 2 is the regularisa-
tion parameter with value inversely proportional to the regularisa-
tion strength, the parameter class_weight = ‘balanced’ adjusts class
weights inversely proportional to their frequencies in the input data,
𝑡𝑜𝑙 = 10−4 represents the tolerance for stopping criteria. In the case
of RBF kernel (Eq. (5)) our SVM model has the parameters given
in Eq. (8) (Scikit-learn developers, 2022c).

𝑠𝑣𝑐 = 𝑆𝑉 𝐶(𝑘𝑒𝑟𝑛𝑒𝑙, 𝐶, 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡, 𝑔𝑎𝑚𝑚𝑎, 𝑡𝑜𝑙), (8)

where kernel = ‘rbf’ denotes RBF type kernel, 𝑔𝑎𝑚𝑚𝑎 = 1 is the kernel
coefficient mentioned in Eq. (5), 𝐶 = 2, 𝑡𝑜𝑙 = 10−3 and class_weight =
‘balanced’ parameters have the same meaning as in Eq. (7). The
parameter values were optimised in a double quasi-logarithmic grid of
𝐶 ∈ [10−2, 102] and 𝑔𝑎𝑚𝑚𝑎 ∈ [10−2, 102] using 10-fold cross-validation
functionality built in the 𝑠𝑘𝑙𝑒𝑎𝑟𝑛.𝑚𝑜𝑑𝑒𝑙𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛.𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉 class.
The heatmap in Fig. 2 illustrates the cross-validation accuracy encoded
in colours. Among the several locations, with accuracy close to the
maximum (≈ 0.9), the coordinates 𝐶 = 2 and 𝑔𝑎𝑚𝑚𝑎 = 1 were selected.
Although the maximum accuracy for 𝐶 = 5 and 𝑔𝑎𝑚𝑚𝑎 = 0.2 is slightly
higher than for 𝐶 = 2 and 𝑔𝑎𝑚𝑚𝑎 = 1, the authors prefer a variant of
a simpler decision function with lower 𝐶 and lower impact of a single
training example expressed by a larger 𝑔𝑎𝑚𝑚𝑎 value.

To obtain K-means clustering of the tested eggs, the class
𝑠𝑘𝑙𝑒𝑎𝑟𝑛.𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝐾𝑀𝑒𝑎𝑛𝑠 has been used, with the constructor in Eq. (9)
(Scikit-learn developers, 2022a).

𝑘𝑚𝑒𝑎𝑛𝑠 = 𝐾𝑀𝑒𝑎𝑛𝑠(𝑖𝑛𝑖𝑡, 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟), (9)

where init =’random’ denotes initial centroids chosen randomly from
the observation set, 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 3 refers to the number of expected egg
types, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 1000 is the maximum number of algorithm iterations
for a single run. The other method parameters retain their default
values.

2.5. Performance analysis

To examine classification performance, two metrics based on the
confusion matrix (Bhandari, 2020) have been applied: the overall ac-
4

curacy (𝐴𝐶) (Eq. (10)) and Cohen’s Kappa coefficient (𝐾) (Eq. (11))
(Grandini et al., 2020). 𝐴𝐶 returns an overall measure of how much
the model is correctly predicting on the entire set of data samples.

𝐴𝐶 = 𝑐
𝑠
, 𝑐 =

𝑛𝐶
∑

𝑖=1
𝐶𝑖,𝑖, 𝑠 =

𝑛𝐶
∑

𝑖=1

𝑛𝐶
∑

𝑖=1
𝐶𝑖,𝑗 (10)

where 𝐶 represents the multiclass confusion matrix with elements 𝐶𝑖,𝑗 ,
𝑛𝐶 is a number of considered classes, 𝑐 — the total number of elements
correctly predicted, 𝑠 — the total number of elements. Cohen’s Kappa
measures the concordance between predicted and true classes in the
confusion matrix 𝐶, which are regarded as two random categorical
variables (Cohen, 1960).

𝐾 =
𝑐 × 𝑠 −

∑𝑛𝐶
𝑖=1 𝑝𝑖 × 𝑡𝑖

𝑠2 −
∑𝑛𝐶

𝑖=1 𝑝𝑖 × 𝑡𝑖
,

𝑝𝑖 =
𝑛𝐶
∑

𝑘=1
𝐶𝑖,𝑘, 𝑡𝑖 =

𝑛𝐶
∑

𝑘=1
𝐶𝑘,𝑖

(11)

where 𝑝𝑖 — the number of times that class 𝑘 was predicted (column
total), 𝑡𝑖 — the number of times that class 𝑖 truly occurs (row total).
When 𝐾 = 0 the model’s prediction is totally independent of the true
classification and if 𝐾 = 1 the model’s prediction is fully dependent
on the actual classification. Instead, 𝐾 < 0 means that the agreement
between the predicted and the true classes distribution is even worse
than the random agreement. The 𝑍-test (Fleiss et al., 2003) was used
to test the significance of Cohen’s Kappa values.

Receiver Operating Characteristics (ROC) curves (Tharwat, 2018)
were computed after SVM classification for each egg type to assess
the dependence of the true and false positive rates on the position of
the classifier cut-off point. The curves were obtained using the One vs.
the Rest (OvR) method. The authors also carried out 𝐹1-score test of
classification accuracy based on the precision and recall values (Grandini
et al., 2020) for a single class of egg type compared with the rest of
the classes. The 𝐹1 formula components are taken from the confusion
matrix of classification results as in Eq. (12).

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1 + 𝑟𝑒𝑐𝑎𝑙𝑙−1

, (12)

2.6. Statistical analysis

The statistical significance of the differences between the emission
of photons in the examined groups of eggs was determined using the
one-way analysis of variance (ANOVA) (Brown & Forsythe, 1974).
After the ANOVA analysis, the post-hoc analysis of the differences
between subsequent pairs of housing types for a given UPE feature was
investigated using the least significant difference (LSD) Fisher test. The
Pearson correlation between UPE from different egg components was
also investigated. Statistical analyses were performed in the Metabo-
Analyst (https://www.metaboanalyst.ca) and PQStat programs (PQStat
Software (2022). PQStat v.1.8.4. Poznan, Poland).

3. Results and discussion

Fig. 3(a) illustrates the average values of UPE from eggs and dif-
ferent parts of eggs recorded in total during 600 s. The number of
photons emitted by each of the separately tested egg components
was found to differ depending on the farming production system.
For yolks, albumens, shells, and intact eggs, the highest ultra-weak
emission was detected from ecologically farmed eggs. Primarily, the
highest bioluminescence of the yolk and the white distinguishes this egg
class from the examined egg population, where the average emission
of biophotons over the entire measurement time was 119 and 122,
respectively (Fig. 3(b)). For eggs obtained from free-range hens, the
average photon emission from egg yolks and whites was 114 and 105,
respectively, and for eggs from the cage system, these values were 104
and 105, respectively.

https://www.metaboanalyst.ca
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Fig. 3. UPE characteristic of egg components. (a) Mean values of UPE. The presented results show statistically significant differences for different types of hen rearing. For one-way
ANOVA results, see Table 1. (b) Hierarchical clustering of egg UPE. (c) Correlation coefficient 𝑟 of UPE from egg components.
Table 1
ANOVA test result of biophoton emission from eggs of various breeding types.

Egg part 𝐹 𝑝 Post-hoc test

Intact egg 73.62 <0.0001 free-range - cage; organic - cage;
organic - free-range

Eggshell 70.28 <0.0001 free-range - cage; organic - cage;
organic - free-range

White 51.84 <0.0001 organic - cage;
organic - free-range

Yolk 25.80 <0.0001 free-range - cage; organic - cage;
organic - free-range

The analysis of the data variance indicated that the UPE emission
was significantly different for various rearing types of hens (Table 1).
Therefore, the entire data set can be used as input features in the
egg class identification process. However, we also tested various con-
figurations of UPE feature vectors in which one chosen parameter
was excluded. As can be seen in Table 1, UPE of egg yolks has the
weakest ANOVA result (F -score = 25.8) among other features. In turn,
as per post-hoc Fisher’s test result, the UPE of egg white is not a
discriminant between caged and free-range eggs. In this tested egg
population, the total numbers of biophotons emitted by white and yolk
are also quite well correlated with the correlation coefficient r = 0.66
(Fig. 3(c)); therefore, one of these features could be omitted. As a result,
the following feature vectors of UPE from the egg and different egg
components were considered:

• white, yolk, eggshell, and intact egg,
• white, eggshell and intact egg,
• yolk, eggshell, and intact egg.

Additionally, principal component analysis (PCA) was applied to
reduce the dimensionality of feature space. We tested feature space
reduced to the first two components in the classification process.

3.1. K-means grouping

K-means unsupervised algorithm, with defined k=3 centroids in the
dataset, was tested to reveal the potential of splitting the tested egg
5

population into natural groups of eggs regarding the ultra-weak photon
emission. The method is prevalent, fast, and simple to implement for
the known number of groups. It always guarantees convergence and
allows improved classification accuracy by several restarts. Initially, the
UPE feature vector contained 4 parameters: a total photon emission
from white, yolk, eggshell, and intact egg, measured from eggs from
three housing types. Table 2 and Fig. 4a present the distribution of
egg samples in individual clusters. As can be seen, two distinguished
clusters (cluster 1 and cluster 3) highly comply with the egg breed-
ing types, organic and caged, respectively. However, in cluster 2, we
observe the dominance of free-range eggs accompanied by eggs of
other types, mainly those from cage breeding. As we previously noticed
from Table 1, eggs from free-range breeding may be confused with
cage eggs based on the white UPE. Therefore we may observe the
most misclassifications in these groups. On the other hand, organi-
cally produced eggs are generally not confused with caged eggs, with
only few exceptions. In this respect, organic eggs, which also had the
highest emission of UPE, constituted the most homogeneous group.
The compliance of the actual egg type with K-means grouping was
checked using the Kappa Cohen test, based on the data in Table 2. The
Kappa coefficient is statistically significant (𝑝 value < 0.000001) at the
significance level of 𝛼 = 0.05, and amounts to 𝐾 = 0.61, which proves
a substantial agreement of the obtained clusters with the egg origin.
As seen in Table 3, dataset pruning by removing sub-optimal features
did not increase the accuracy of the K-means classification, except
when data on biophotons emitted from whites were excluded from
the input vector. The Kappa coefficient obtained for the UPE dataset
without the UPE emission from the whites has a slightly better value
(𝐾 = 0.63). In contrast, eliminating UPE data of egg yolks worsened the
clustering result (𝐾 = 0.42). The result of egg classification carried out
on the vector of the remaining 3 features (without UPE from whites) is
presented in Fig.2b.

As shown, reducing the dataset by removing non-discriminatory
feature slightly improved the result of grouping eggs according to their
registered type. However, reducing features and orthogonalisation of
data using PCA did not improve egg clustering. In the latter case, the
𝐾 statistic of 0.46 for the loadings PC1 and PC2 indicates only moderate
clustering agreement.
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Fig. 4. Egg clustering by K-means using biophoton data. (a) Clusters based on 4 UPE features. For details, see Table 2; and (b) clusters based on 3 UPE features (UPE from yolks,
shells, and intact eggs). For details see Table 5.
Table 2
Sample distribution after K-means algorithm clustering (4
feature input vector).

Egg type Cluster 1 Cluster 2 Cluster 3

Organic 45 5 0
Free-range 9 41 0
Cage 4 20 24

Table 3
Cohen’s Kappa test scores for K-means algorithm clustering results presented in Table 2,
Table 4 and Table 5.

Emission components 𝐾 𝑍-score 𝑝

Yolk, white, eggshell, intact egg 0.61 10.87 <0.000001
Yolk, eggshell, intact egg 0.63 11.10 <0.000001
White, eggshell, intact egg 0.42 7.63 <0.000001
PC1, PC2 0.46 8.81 <0.000001

Table 4
Sample distribution after K-means algorithm clustering (3
feature input vector, without UPE from egg yolk).

Egg type Cluster 1 Cluster 2 Cluster 3

Organic 42 8 0
Free-range 8 41 1
Cage 4 15 29

Table 5
Sample distribution after K-means algorithm clustering (3
feature input vector, without UPE from egg white).

Egg type Cluster 1 Cluster 2 Cluster 3

Free-range 27 4 17
Organic 3 47 0
Cage 27 23 0

3.2. SVM classifiers performance

Two models of SVM with linear and radial kernel functions were
developed to identify egg types. Confusion matrices verifying these
models are presented in Table 6 and Table 7. They were calculated
by validation tests on the dataframe randomly divided into training
and test subsets, with the test size equal to 10% of 𝑛𝑆 = 150 egg
UPE data samples left after the outlier capping. Validation is performed
on the egg-type prediction results of 1000 such tests with a random
selection of test subsets. The 10% of test data was used instead of
typical value 20% to keep more data of each class for training. With
a limited number of egg samples per class, while remaining within the
sample size limit for multivariate analysis, the 10:90 data split provides
6

Table 6
The confusion matrix obtained from the SVM classifier with the linear kernel function
and performance evaluations, y — ‘yolk’, w — ‘white’, e — ‘eggshell’, ie — ‘intact
egg’, ‘f-range’ — free-range, 𝐹1 — F1-score.

Emission sources Predicted True type

Cage f-range Organic Precision Recall 𝐹1

y, w, e, ie cage 3634 476 366 0.81 0.82 0.82
f-range 366 4335 228 0.88 0.81 0.85
organic 412 517 4666 0.83 0.89 0.86

w, e, ie cage 3475 386 205 0.85 0.78 0.82
f-range 642 4287 216 0.83 0.80 0.82
organic 344 657 4788 0.83 0.92 0.87

y, e, ie cage 3504 555 224 0.82 0.78 0.80
f-range 623 3599 889 0.70 0.68 0.69
organic 358 1117 4131 0.74 0.79 0.76

greater reliability for grading tests. The accuracy coefficients 𝐴𝐶 and
𝐾 were calculated from the confusion matrices according to the rules
in Eq. (10) and Eq. (11) and listed in Table 8 and Table 9, for linear
and nonlinear classifier SVM, respectively. The classifier with RBF
kernel function yields an accuracy 𝐴𝐶 of around 88%, which compares
favourably with the accuracy of 84% of linear kernel SVM. Similarly,
the Kappa coefficient decreases from 0.81 to 0.76 when replacing the
RBF kernel with linear if one considers the photon emission from 4 egg
components. In the Table 10 it has been shown that 20% of test data
does not influence the classification accuracy.

The Receiver Operation Characteristic (ROC) curves of all egg types
shown in Fig. 5 are computed based on raw output probabilities of the
SVM predictions. Each ROC curve illustrates the dependency between
Sensitivity and 1-Specificity of every egg type for all possible cut-off
point values. Every egg class is compared with others in the mode
One vs the Rest (OvR). The values of the Area Under the Curve
(𝐴𝑈𝐶) for each egg type have been added to the figure legends. In
the case of linear SVM classification in Fig. 5(a), the ROC curve for
organic eggs goes closest to the point (0, 1) and has the largest value
𝐴𝑈𝐶 = 0.96 confirming the best discrimination of this egg type based
on photon emission. The two other ROC curve profiles are further from
the optimum trajectory and have lower 𝐴𝑈𝐶 values, less than 0.91. The
ROC curve of free-range eggs in Fig. 5(a) shows that this egg type with
𝐴𝑈𝐶 = 0.85 may be more challenging to distinguish from the other
types using linear classification. In the case of a non-linear classifier,
the organic egg type has a cut-off point the same around (0, 1) as for
other egg types. 𝐴𝑈𝐶 values are similar for organic, free-range and
caged eggs.

SVM classification accuracy of egg types depends on the amount
and type of emission components introduced to the classifier. A full
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Fig. 5. ROC curves type One vs. the Rest (OvR) for all egg types recognised by the SVM classifier with the linear kernel (a) and RBF kernel (b), 𝐴𝑈𝐶 — Area under the Curve.

ll emission components (yolk, white, shell, and intact egg) are used in the classification.
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Table 7
The confusion matrix obtained from the SVM classifier with the radial kernel function
and performance evaluations, y — ‘yolk’, w — ‘white’, e — ‘eggshell’, ie — ‘intact
egg’, ‘f-range’ — free-range, 𝐹1 — F1-score.

Emission sources Predicted True type

Cage f-range Organic Precision Recall 𝐹1

y, w, e, ie cage 3695 387 139 0.88 0.83 0.85
f-range 441 4469 193 0.88 0.86 0.87
organic 337 368 4971 0.88 0.94 0.91

w, e, ie cage 3475 386 205 0.86 0.80 0.83
f-range 642 4287 216 0.85 0.81 0.83
organic 344 657 4788 0.83 0.91 0.87

y, e, ie cage 3499 297 89 0.90 0.79 0.84
f-range 679 3982 868 0.72 0.77 0.75
organic 276 877 4433 0.79 0.82 0.81

Table 8
SVM with the linear kernel function performance evaluation by Accuracy
(AC) and Cohen’s Kappa coefficient (𝐾). 𝑝 values of 𝑍 statistic <
0.000001.

Emission components AC 𝐾 𝑍-score

Yolk, white, eggshell, intact egg 0.84 0.76 132.03
White, eggshell, intact egg 0.84 0.75 130.43
Yolk, eggshell, intact egg 0.75 0.62 107.59
Intact egg 0.65 0.48 82.57
PC1, PC2 0.76 0.64 111.37

Table 9
SVM with the evaluation of radial kernel function performance by
Accuracy (AC) and Cohen’s Kappa score (𝐾). 𝑝 values of 𝑍 statistic
< 0.000001.

Emission components AC 𝐾 𝑍-score

Yolk, white, eggshell, intact egg 0.88 0.81 140.53
White, eggshell, intact egg 0.84 0.76 130.43
Yolk, eggshell, intact egg 0.79 0.69 119.19
Intact egg 0.60 0.40 69.58
PC1, PC2 0.78 0.66 115.01

Table 10
SVM with the evaluation of radial kernel function performance by
Accuracy (AC) and Cohen’s Kappa score (𝐾) for 20% of test data. 𝑝
values of 𝑍 statistic < 0.000001.

Emission components AC 𝐾 𝑍-score

Yolk, white, eggshell, intact egg 0.87 0.80 193.09
White, eggshell, intact egg 0.84 0.76 182.77
Yolk, eggshell, intact egg 0.80 0.69 167.21
Intact egg 0.61 0.41 101.00
7

Table 11
SVM with the evaluation of polynomial and sigmoid SVM kernel
functions performance by Accuracy (AC) and Cohen’s Kappa score (𝐾).
𝑝 values of 𝑍 statistic < 0.000001.

Kernel AC 𝐾 𝑍-score

Polynomial, deg = 3 0.73 0.59 107.30
Polynomial, deg = 5 0.68 0.52 100.20
Sigmoid 0.74 0.62 106.02

set of 4 emission components, i.e. (yolk, white, shell, and intact egg)
provides the best classification accuracy for the nonlinear SVM model,
although they are correlated. Reducing the number of components by
one lowers the 𝐾 and 𝐴𝐶 coefficients to a varying degree, as illustrated
n Table 8 and Table 9. The PCA transformation and reduction of input
ata to (𝑃𝐶1, 𝑃𝐶2) components degrade the classifier accuracy to

𝐴𝐶 = 76% and 𝐾 = 0.64 for linear kernel and 𝐴𝐶 = 78% and 𝐾 = 0.66
for RBF kernel. This is because the number of emission data features
of egg components is rather small; therefore, all features significantly
influence the classification accuracy. (𝑃𝐶1, 𝑃𝐶2) explain only about
87% of the data variance. Better classification accuracy with the RBF
than with the linear kernel while maintaining the same level of 𝐶
regularisation and moderate 𝛾 value proves that the considered problem
of egg classification based on biophoton emission is not entirely linear.
𝐹1-score is a good quality indicator of an egg class identification
elative to other classes in a multivariate environment. It balances both
ver and underestimation errors. The 𝐹1 values for different egg type
lassifications and different component sets emitting biophotons are
iven in Table 6 and Table 7. Relatively high values 𝐹1 ≥ 0.85 for

the RBF kernel SVM and all four or yolk, shell, and intact egg emission
components confirm the advantage of non-linear classification in the
studied cases. In the nonlinear case, organic eggs are best classified by
𝐹1-score, as shown for ROC curves.

In our experiments, the egg classification based only on the emission
of intact eggs provides no more than 65% of accuracy (Table 8).
Therefore, the authors propose to use biophoton emission measurement
from the intact egg and its components’ emission (yolk, white and
eggshell). This approach allows an egg classification accuracy of almost
90% for the SVM with RBF kernel.

The results of UPE classification by SVM with kernels of sigmoidal
and polynomial types have also been considered. The indices of classi-
fication accuracy of eggs were calculated for the UPE data from all egg
components. As can be seen in Table 11, the accuracies for polynomial
or sigmoidal kernels are worse even than in the case of linear kernels.

Our result of classification accuracy, which is 88% based on UPE
measurement only, is located in the upper part of the precision range
reported by other researchers, which is between 63–99%. Our accuracy
does not differ from the quality of egg classification using different
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Table 12
Egg quality parameters according to different researchers.

Quality params Unit Cage f-range Organic

Haugh unita 84.60 ± 0.59 78.60 ± 0.36 –
Albumen pHa 8.11 ± 0.22 8.19 ± 0.38 –
Carotenoidsa μg/g 11.20 ± 0.20 39.10 ± 1.40 –
Tocopherola μg/g 91.30 ± 2.50 83.70 ± 1.70 –

Luteinb μg/g 4.11 ± 3.75 7.49 ± 2.62 17.64 ± 4.30
Zeaxanthinb μg/g 3.98 ± 1.38 3.25 ± 0.84 10.21 ± 1.99
Folic acidc μg/100 g 78.50 ± 3.80 85.50 ± 5.70 113.8 ± 4.80
SFAd % 36.26 ± 0.29 31.44 ± 0.38 –
MUFAd % 46.90 ± 0.32 42.71 ± 0.80 –
PUFAd % 16.84 ± 0.35 25.87 ± 0.76 –
n-6/n-3d % 23.76 ± 0.95 14.48 ± 0.92 –
SFAe % 84.45 ± nd – 73.05 ± nd
MUFAe % 108.45 ± nd – 118.77 ± nd
PUFAe % 35.85 ± nd – 30.32 ± nd
n-6/n-3e % 8.88 ± nd – 4.76 ± nd
SFAf % 34.90 ± 3.83 37.03 ± 7.09 33.63 ± 7.03
MUFAf % 39.80 ± 3.72 40.95 ± 4.97 42.00 ± 8.76
PUFAf % 25.30 ± 2.48 21.95 ± 3.57 24.38 ± 6.50
n-6/n-3f % 10.85 ± 1.92 12.25 ± 3.88 11.53 ± 3.86

SFA — saturated fatty acids; MUFA — monounsaturated fatty acids; PUFA — polyunsaturated fatty acids; % of the fatty acids;
nd — no data available.
a Gałązka-Czarnecka et al. (2019)
b Schlatterrer and Breithaupt (2006)
c Czarnowska-Kujawska et al. (2021)
d Popova et al. (2020)
e Mugnai et al. (2014)
f Egerer (2009)
odels, including the SVM algorithm, based on NIR spectral data. Cruz-
irado et al. (2021) built both PLS-DA and SVM models for Haugh Unit
HU) prediction, that reached accuracy of 87.0% and 85.7% respec-
ively. In other works, even worse classification accuracy was achieved
or egg freshness examination using NIR spectral technique. Zhao et al.
2010) developed classification models, including SVM, to discriminate
resh/unfresh eggs, achieving an accuracy of 63.3% of correct classifi-
ation of fresh samples. Zhang et al. (2015) achieved freshness accuracy
f 84% in egg freshness prediction.

The better accuracy of egg quality classification can be achieved by
ncluding a wide number of egg features. Sehirli and Arslan (2022) used
ver 20 egg features to predict egg freshness using different machine
earning models. The accuracy of classification ranged from 81.0% (k-
earest Neighbours - kNN model) to 98.6% (linear regression, LR). The
ccuracy of SVM model was also high, with its maximal value equal to
5.5%.

Lambing (1992) showed that the origin of hen’s eggs could be
etermined based on the intact egg UPE intensity. Free-range eggs
xhibited a higher emission rate after white light illumination because
hey have more stored energy UV than eggs from soil or cages. Köhler
t al. (1991) found that exposure to sunlight or light similar to daylight,
s well as feeding with green material, enhanced UPE from yolks of
rganic eggs. The quality of the chemical compounds of the eggs had
significant impact on the amount of internally stored energy.

Generally, high UPE values for eggs are obtained in conditions
imilar to the hens’ natural living and feeding conditions. These, in
urn, contribute to the high proportion of biologically active organic
ompounds in the eggs (Grashorn & Egerer, 2007; Lambing, 1992). In
ur experiment, the populations of the same hen breed of Rhode Island
ed (R-11) were provided with various feeding methods and living
onditions. In the case of ecologically farmed hens, a diet varied in
rain and vegetables, with the addition of herbs, greens, and flax oil
eal (rich in alpha-linolenic acid) was used. Chemical data for caged

nd free-range eggs from the same batch, as tested for photon emission,
an be found in the work of Gałązka-Czarnecka et al. (2019). As you
an see in Table 12, free-range eggs have a relatively high carotenoid
ontent compared to caged eggs. Also, Table 12 presents selected egg
8

uality indicators and their values for the considered types of hen
farms, taken from various literature sources. Research by other authors
shows that organic eggs also have a high proportion of carotenoids.
According to data from Schlatterrer and Breithaupt (2006), organic
eggs have more than twice the lutein and zeaxanthin content of other
types of eggs. A lower proportion of compounds from the group of
vitamins characterises cage eggs. In the related egg group, Gałązka-
Czarnecka detected a lower proportion of tocopherol in cage eggs. In
turn, Czarnowska-Kujawska et al. (2021) indicate the highest content
of folic acid in the eggs from organic farming (113.8 μg∕100 g), and the
lowest in case of cage farming (78.5 μg∕100 g).

The free-range housing is conducive to low values of n-6 polyun-
saturated fatty acids (PUFA n-6) and a higher percentage of PUFA
n-3 compared to eggs from a traditional cage farming system (Mugnai
et al., 2014). These conclusions were also confirmed by Popova et al.
(2020), Sergin et al. (2021) and Cartoni Mancinelli et al. (2022). It
has been observed that the diet of hens kept with access to the run
positively shapes the fatty acid profile of eggs. Hens’ access to green
pastures maintains a favourable, low ratio of n-6/n-3 acids in eggs.

According to Egerer (2009), yolk samples with low contents of sat-
urated fatty acids (SFA) and high contents of PUFA showed the highest
photon emissions. Organic eggs, containing the lowest SFA percentage
in the whole fatty acid profile (see Table 12), were characterised by
the highest emission of biophotons, equal to 2.38 qNL units. In her
studies, Egerer found the lowest biophoton emissions from both caged
and free-range eggs, around 1.8 qNL unit, which had a high content of
SFA and low content of PUFA, respectively. The results of Grashorn and
Egerer (2007) also depicted higher UPE with a slower declining trend
for organic eggs. These were characterised by the lowest n-6/n-3 fatty
acid ratios in yolks among free-range, barn and cage eggs, especially
during summer. This confirms that the measurement of UPE can be a
suitable method for evaluating the quality of organic eggs.

It is worth noting that, of the egg components, the largest emitter
of photons is the shell separated from the whole egg. On average,
this emission was higher than from yolks by 59%, 54%, and 42%,
respectively, for organic, free-range, and cage eggs. This observation
raises the interesting question of the dependence of photon emission
on the structure of the shell and its mineral and biological com-
ponents. This also suggests that in further UPE research, one may
attempt a multivariate study, considering eggs’ physical and chemical

characteristics.
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4. Conclusions

In the paper, we showed the possibility of distinguishing eggs from
different breeding types based only on the differences in biophoton
emission from individual parts of the eggs. We used UPE to discrim-
inate three hen’s egg categories: organic, free-range and caged. Using
unsupervised K-means clustering, clusters corresponding to the tested
types of eggs were confirmed in the space of features expressed by the
emission of biophotons from individual egg components. Supervised
SVM classifier training was performed based only on egg labelling.
The nonlinear SVM classifier with RBF kernel allowed to achieve 88%
accuracy of egg classification based on the amount of such emission.
Although the emission counts of the different egg components are
partially dependent, the use of the data of each one improves the
final classification accuracy. The novelty of this work lies in building
a classifier model based only on biophotons emitted by eggs, which
differentiates them in terms of breeding types with the relatively high
accuracy given above. This allows us to consider UPE as a carrier of im-
portant information, on par with spectral NIR data. So far, the authors
have not found in the literature a UPE-based model that recognises the
type of chicken egg breeding.

The results confirmed several previous reports that eggs from or-
ganic farming generally show higher UPE than eggs from other housing
systems. They also highlighted the usefulness of analysing the num-
ber of emitted biophotons from whole eggs and their components to
determine the type of hen housing.
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