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Abstract

Several marine species have developed a magnetic perception that is essential for naviga-

tion and detection of prey and predators. One of these species is the transparent glass cat-

fish that contains an ampullary organ dedicated to sense magnetic fields. Here we examine

the behavior of the glass catfish in response to static magnetic fields which will provide valu-

able insight on function of this magnetic response. By utilizing state of the art animal tracking

software and artificial intelligence approaches, we quantified the effects of magnetic fields

on the swimming direction of glass catfish. The results demonstrate that glass catfish placed

in a radial arm maze, consistently swim away from magnetic fields over 20 μT and show

adaptability to changing magnetic field direction and location.

Introduction

Throughout evolution, organisms have developed unique strategies to become more competi-

tive in their environment. One unique adaptation is the ability to sense magnetic fields, i.e.,

magnetoreception. While animals like salmonids, pigeons, eels and sea turtles use magnetore-

ception to migrate over thousands of kilometers [1–10], non-migratory fish species have also

shown evidence of magnetoreception [11, 12]. The glass catfish is also known to be sensitive to

the Earth’s magnetic field [13, 14].

The glass catfish (Kryptopterus vitreolus) is found in slow moving fresh water in Southeast

Asia, ranges from 31.4–64.6 mm in length and is transparent except for their organ packed

head [15]. The glass catfish has historically been of interest to a wide range of scientific disci-

plines, including circulation [16], cell line establishment [17] and electroreception [18, 19].

The interest in this species’ magnetoreception has recently been reignited due to its potential

to be part of a synthetic system that will allow remote, magnetic control, of neural function

[20].
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New advances in molecular biology have brought new tools to identify the mechanisms by

which this species respond to electromagnetic fields. Recently, we have discovered a gene (elec-

tromagnetic perceptive gene (EPG)) that is expressed in the glass catfish’s ampullary organ

and is specifically activated in response to magnetic stimuli. This genetic-based magnetorecep-

tion has a great potential as a neuromodulation technology and as a valuable tool to study neu-

ral behavior from the molecular to network levels [20–22]. However, the mechanism by which

magnetoreception manifests and functions is not well understood [23–29].

This work was designed to characterize the natural behavior of glass catfish in response to

magnetic fields. This understanding may lead to improved engineering of magnetic-receptive

modulation and sets a foundation for a new magnetically sensitive animal model. We capital-

ized on new concepts of artificial intelligence as well as traditional video tracking algorithms to

quantify how glass catfish respond to magnetic stimulation with high spatial and temporal

resolution.

Methods

All animal procedures were conducted in accordance with the NIH Guide for the Care and

Use of Laboratory Animals and approved by the Michigan State University Institutional Ani-

mal Care and Use Committee.

Thirteen Glass catfish of undetermined sex and age [30] were imported from Thailand to

the United States and housed in a standard 30-gallon fish tank with a 12-hour day/night cycle

with water maintained at 27 degrees and provided with an enriched environment. After arriv-

ing from Thailand, fish were acclimatized for 6 weeks before starting experiments. Water qual-

ity was checked daily for ammonium, nitrite, and nitrate. Fish were fed a diet of fresh hatched

brine shrimp twice per day. All experiments were conducted between the hours of 11 am and

4 pm to eliminate behavioral changes due to feeding [31] and light cycle.

The Y-maze’s arms were 60 cm long and 10 cm wide with a central area of 10x10x10 cm

(AnyMaze, San Diego Instruments, CA). One week prior to starting experiments all fish were

transitioned from their tanks to the radial Y-maze where they lived for the duration of each

experiment (2 weeks). Enrichment materials were carried over from permanent housing to Y-

maze, rearranged daily and removed prior to starting experiments. A five-gallon water change

was done weekly in the Y-maze with mature water to control water quality and reduce the

impact of any unknown pheromones. The same fish were used for all experiments, thirteen

fish were tested in constant location and twelve in alternating location experiment. The mag-

netic stimulus and the sham stimulus were placed 10 cm from the end of an arm, inside of the

maze. Each trial was recorded for 30 minutes by overhead cameras while the experimenter was

out of the room. Each trial was repeated four times for each condition for a total of 24 trials. In

order to negate the effects of Earth’s intrinsic magnetic field, the location of the magnet was

rotated during the changing location experiment: Arm 1 was oriented in the south west direc-

tion, Arm 2 in the northern direction and Arm 3 in the south east direction.

A permanent Neodymium Rare Earth Magnet (11.5 cm x 3.18 cm x 2.2 cm) with a horizon-

tal magnetic flux of 577 mT at the magnet’s surface was placed 10 cm from the end of one of

the Y-maze arms. The strength of the magnetic field induced by the magnet was calculated by

COMSOL (Fig 1). A sham stimulus was made from plastic and aluminum foil, with similar

dimensions to the magnet. All recordings were analyzed by a radial-maze tracking software

written in Matlab by Delcourt et al. [32]. Delcourt et al. software is available on github::

https://github.com/sjmgarnier/projectRadial. Videos were taken originally in AnyMaze format

and converted to.mp4. The Matlab program then created a background image by taking an

average of 100 frames. Fish location was determined by subtracting the background image
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from each frame, remaining pixels with a grey scale value higher than threshold were given a

value of 1, continuous pixels with a value of 1 were labeled as a fish. The spatial resolution of

all videos was 3.57 ± .52 pixels/cm and were recorded at 30 frames per second. The number of

fish in each arm was reported every second, however fish located in the center of the Y-maze

were not reported. The average of the 4 trials for the arm of interest (Magnet/Sham) and the

pooled average of the two empty arms (No Magnet/Sham) is reported in Figs 2 and 3.

Data is reported as median ± 95% confidence intervals (CI). Data was analyzed in R Studio,

using the bootstrap method to calculate CI’s and Mann-Whitney U Test to compare the arm

of interest with the pooled average of the two empty arms across the 4 trials. Shapiro-Wilke

tests and Q-Q plot analysis were used to determine distribution of the data which was found to

be not normally distributed.

In a separate set of experiments, a single fish was selected from the school and placed in the

center of the Y-maze. Two trials of magnet and sham conditions were conducted: one set of

trials was used for computer training, and the other for analysis using the trained software.

DeepLabCut [33, 34] was used to track the location of a single fish in the Y-maze. DeepLabCut

code is available at the following address: https://github.com/DeepLabCut/DeepLabCut.git.

The program was initially trained on 20 frames and ran through 1,300,000 iterations. After ini-

tial training, outlier frames were extracted and re-labeled. The program was re-trained with

the addition of the outlier frames for 100,000 iterations. Retraining was done three times until

visual inspection and expected error were satisfactory (±15 pixels). DeepLabCut results were

extracted using an output CSV file from the code, which provides the x,y coordinates of the

tracked fish for every frame of the video. This file was exported to R-Studio and plotted as a

standard scatter plot and overlaid on a Y-maze diagram. Tracked videos are two minutes and

fifty seconds long (5,100 frames).

Results

Constant location of stimulus

We characterized fish behavior as a response to a magnetic stimulation that was consistently

present at the same location. In these sets of experiments the magnet was always placed in

Arm 1 of the Y-maze. The initial location of the fish school (n = 13) was changed randomly to

one of the Y-maze’s three arms. Each trial was repeated four times for each arm for a total of

24 trials. The number of fish present in Arm 1 (Arm with magnet) was significantly lower than

the number of fish in the other two arms in the first minute (Arm 1-Magnet, 7.69% ± 8.4%;

Arm 2 & 3-No Magnet, 38.46% ± 8.84%; P =< .0005, U = 147424, Mann-Whitney U Test),

after 5 minutes (Arm 1-Magnet, 7.69% ± 2.3%; Arm 2 & 3-No Magnet, 38.46% ± 6.41%; P =<

Fig 1. Diagram of the experimental set up. A) Constant location of stimulus-The magnet was always placed in the same arm and the fish were barricaded

randomly in one of the three arms. B) Changing location of stimulus- The magnet was randomly placed in one of the three arms, and fish were always barricaded in

the center of the Y-maze. C) COSMOL stimulation depicting the strength of the magnetic field induced by the magnet.

https://doi.org/10.1371/journal.pone.0248141.g001
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.0005, U = 3227686, Mann-Whitney U Test), and over the entire recording that lasted 30 min-

utes (Arm 1-Magnet, 7.69% ± 1%; Arm 2 & 3-No Magnet, 38.46% ± 3%; P =< .0005,

U = 175417129, Mann-Whitney U Test) (Fig 2). When the initial fish location was also in Arm

1, the school immediately swam away from that arm and stayed away. In contrast, when the

sham stimulus was placed in Arm 1, the fish exhibited less preference for the no-sham arms

than they did in the previous experiment, after 1 minute, (Arm 1-Sham, 15.39% ± 8.4%; Arm 2

& 3-No Sham, 30.77% ± 15.94%; P =< .0005, U = 416993 Mann-Whitney U Test,), after 5

minutes, (Arm 1-Sham, 7.69% ± 4.75%; Arm 2 & 3-No Sham, 30.77% ± 5.58%; P =< .0005,

U = 9618087, Mann-Whitney U Test), and after 30 minutes, (Arm 1-Sham, 7.69% ± 2.08%;

Arm 2 & 3-No Sham, 38.46% ± 3.23%; P =< .005, U = 3.12E8 Mann-Whitney U Test).

Between experiments it was also observed that there is significantly less fish in Arm 1 when the

Fig 2. Constant location of stimulus results. The average percentage of the fish school (n = 13) in sham/magnet (Arm

1) compared to the merged data from no-sham/magnet arms (Arm 2 & 3). There is significantly less fish in the arm

with magnet present compared to the pooled no-magnet arms on average. There is also significantly more fish in the

no-sham arms compared to sham arm (��� = p< .0005, Mann-Whitney U Test). This is a Spear Box Plot with the

box showing 25% to 75% interquartile range and median represented as a red line, whiskers show minimum and

maximum values. Magnet 1 minute: median = 7.69%, IQR = 15.39%; No Magnet 1 Minute: median = 38.46%,

IQR = 38.46%; Magnet 5 minutes: median = 7.79%, IQR = 15.39%; No Magnet 5 Minutes: median = 38.46%,

IQR = 38.46%; Sham 1 minute: median = 15.39%, IQR = 23.08%; No Sham 1 minute: median = 30.77%,

IQR = 46.15%; Sham 5 minutes: median = 7.69%, IQR = 23.08%; No Sham 5 minutes: median = 30.77%,

IQR = 46.15%.

https://doi.org/10.1371/journal.pone.0248141.g002
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magnet is present compared to when the sham is present at all time points (p< .0005, Mann-

Whitney U Test). These experiments showed that glass catfish prefer to avoid swimming in

water with a magnetic strength over 20 μT (Figs 1c and 2). Results indicate that regardless of

the initial location of the fish, they tend to avoid Arm 1 more when magnet was present com-

pared to sham at all time points (p< .0005,Mann-Whitney U Test).

Changing location of stimulus

We then sought to determine if fish behavior changed with the location of the magnetic stimu-

lation. In this set of experiments the fish school (n = 12) was barricaded in the middle of the Y-

maze, and the magnetic or sham stimuli were placed randomly in one of the arms (Fig 1b).

After barricade removal the fish swam away from the magnet and explored the two other

maze-arms. In line with previous experiments, there are significantly less fish present in the

arm on average when the magnet was present compared to when the sham stimulus was pres-

ent (Arm 1-Magnet, 8.33% ± 8.25%, Arm 1-Sham, 25% ± 15.68%, U = 908254; Arm 2-Magnet,

11.53% ± 9.71%, Arm 2-Sham, 16.67% ± 23.4%, U = 890468; Arm 3-Magnet, 41.67% ± 22.6%;

Arm 3-Sham, 50% ± 5.11%, U = 983677; P =< .0005 Mann-Whitney U Test for all tests). Fig 3

shows the average percentage of the fish school present in each arm within the first 5 minutes

of recording.

For the purpose of individual swim pattern analysis, one fish was placed in the middle of

the Y-maze. Once the barricade had been removed the fish swam across two arms where no

magnet was present but exhibited a clear avoidance from the arm containing the magnet. We

used a state-of-the-art artificial intelligence (AI) approach, DeepLabCut [33, 34] to track the

fish’s swimming path. DeepLabCut was successfully trained on a single fish with an error of

Fig 3. Changing location of stimulus results. The average percentage of fish school (n = 12) in each arm over five minutes. There is

significantly less fish, on average, in the arm when magnet is present compared to when sham in present in the same arm (��� p<

.0005 Mann-Whitney U Test). This is a Spear Box Plot with the box showing 25% to 75% interquartile range and median represented

as a black line, whiskers show minimum and maximum values. Arm 1 Magnet: median = 8.33%, IQR = 25%; Arm 1 Sham:

median = 25%, IQR = 58.77%; Arm 2 Magnet: median = 0%, IQR = 25%; Arm 2 Sham: median = 16.67%, IQR = 41.67%; Arm 3

Magnet: median = 41.67%, IQR = 33.33%; Arm 3 Sham: median = 50%, IQR = 25%.

https://doi.org/10.1371/journal.pone.0248141.g003
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less than 4.2 cm or 15 pixels. Fig 4 shows that magnetic stimulation results in an individual fish

swimming away from the magnet immediately after barricade removal. Consistent with previ-

ous results, sham stimulus did not induce an avoidance behavior.

Discussion

Several marine species have developed a magnetic perception that is useful in navigation and

the detection of prey and predators [6, 35], for review see [36–38]; animals such as sharks and

platypus, use magnetoreception for prey detection [39–43]. Others, like ants [44], use this

sense for predator avoidance and the nematode, Caenorhabditis elegance uses magnetorecep-

tion for vertical navigation in soil [45]. Even cattle have been shown to align themselves with

electromagnetic pulses [46]. Recently, evidence of magnetoreception has been unveiled in fish

species previously thought to me non-magnetic, such as zebrafish [47]. The glass catfish is a

transparent fish found in slow moving rivers of Southeast Asia where visibility is low [15, 17].

Until recently, the transparent glass catfish was commonly identified as Kryptopterus bicirrhis
but is now known to be Kryptopterus vitreolus [15]. It appears plausible that in these types of

conditions, magnetic perception is an advantageous trait to conserve. However, the mecha-

nisms allowing magnetic sensation remain largely unknown [26, 38]. We have used state-of-

the-art software based on artificial intelligence object tracking algorithms to characterize glass

catfish behavioral response to magnetic fields. The results indicate that glass catfish consis-

tently swim away from magnetic fields over 20 μT and show adaptability to changing magnetic

field direction and location. In addition, our results show that this magnetic avoidance

Fig 4. DeepLabCut tracking of a single fish. A) Experimental set up. B) Sham, C) Magnet. The fish position is shown here over every frame for 170 s (5,100 frames).

Indivudual values were exported and plotted using R and overlaid on a Y-maze diagram. D) Directional tracing of sham experiment. E) Directional tracing of magnet

experiment. The red box on B and E represents the area where the fish spent 77% (131 seconds) of its time during the magnetic trial. The movment down the two arms

were rapid, resulting in less total visible dots.

https://doi.org/10.1371/journal.pone.0248141.g004

PLOS ONE Swimming direction of the glass catfish is responsive to magnetic stimulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0248141 March 5, 2021 6 / 10

https://doi.org/10.1371/journal.pone.0248141.g004
https://doi.org/10.1371/journal.pone.0248141


behavior is not influenced by school behavior. It is important to note that there is significantly

less fish in the Sham arm compared to No-Sham arm in the constant location stimulus experi-

ment. We hypothesize that this is because the fish developed an avoidance for Arm 1 due to

repeatedly exposed to the magnet. In the alternating location experiment we see no avoidance

of the sham object in all three arms.

We have previously demonstrated that the modulatory effects of magnetic stimulation on

mammalian cells transfected with EPG was induced by magnetic fields of 50 mT [21]. How-

ever, in this experiment we see that fish are significantly more sensitive to magnetic fields than

transfected cells, with fish starting to exhibit avoidance behavior at ~20 μT (Figs 2 and 3).

While the pathway by which EPG modulates calcium channels is unknown [20, 21] it is possi-

ble that there are accessory proteins that are currently remain unknown, which amplify mag-

netic sensitivity in glass catfish. It could also be possible that different cellular mechanisms

occur over the time when EPG is exposed to magnetic fields. Currently, we can only evoke a

cellular response by using strong magnetic fields in culture (> 50mT). However, the Earth’s

magnetic field is only 30 μT-60 μT, and yet, is readily detected by glass catfish. One of the

major challenges in EPG’s development as a neuromodulatory technology is the attenuation of

magnetic fields over distance. If the biological amplification properties of the glass catfish are

uncovered, this technology could be used to treat deep brain afflictions without the need for

surgery.

Using AI such as DeepLabCut can be transformative to animal behavior studies. Using this

method, we could follow the swimming pattern of an individual fish, over thousands of frames

with high spatial and temporal resolution. Another advantage is the machine learning compo-

nents of AI. The more trials run through DeepLabCut, the more efficient and accurate it

becomes at tracing animals in similar situations. However, the transparency of glass catfish

caused detection difficulties with DeepLabCut and recording hardware when rapid movement

caused insufficient contrast between the fish and Y-maze. In Fig 4B, during the sham stimulus

the fish swam at a gradual pace throughout the maze. However, during magnetic stimulus the

fish tend to stay in one area then dash to the end of an arm and back. During these rapids

movements our recording software experienced a drop in frame rate Once the fish slowed

down and the contrast was restored, the tracking became accurate. While the transparent glass

catfish poise unique challenges for AI tracing due to its transparent body, this AI tracing

approach can be beneficial to track movement of other marine species.

We have established that the glass catfish has unique magnetic field sensing capabilities that

position it as a valuable model to study magnetoreception in animal species. The cellular

mechanisms allowing this capability remains to be determined. We have already identified

and cloned the EPG from glass catfish. But is this the only magnetic-sensitive protein? Does it

work with other proteins to amplify and modulate its activity? Do other animal species that

have been shown to be sensitive to magnetic fields have similar proteins? This animal model

can provide key information to address these questions. By characterizing the behavior of glass

catfish, we are now working towards developing a fish with a knock-out in the EPG gene. This

will elucidate if there are additional genes associated with magnetic responses and will facilitate

the development of the next generation of additional magnetic sensing molecular tools.
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