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Abstract 

Nonionizing millimeter-waves (MMW) are reported to inhibit cell division of lung cancer cells. 

In this article, we present a mechanism for the effect of inhibited cell division upon 85-105 

GHz MMW irradiation. Strains of cell division model organism Saccharomyces cerevisiae  

cultured under physiological conditions were analyzed for the effects of MMW exposure. 

Irradiated cells showed a reduced growth rate than that of control (sham) cells. DNA damage 

repair mutant (rad52) strain cells were also subjected to MMW exposure to identify the 

involvement of genomic alteration(s) in this process. Irradiated wild type and rad52 mutant 

strains showed similar colony growth profiles indicating MMW treatment does not alter 

genomic DNA. Further, MMW interaction with cytological water was explored as a possible 

mechanism of action. Cells absorbed more power as compared to plain water. MMW 

irradiation highly absorbed by the cytological water content likely affects proteomic changes, 

accounting for the observed effects of inhibited cell division. Irradiations using a standard horn 

antenna were compared to that of a compact waveguide for increased power which led to 

complete termination of cell division. Our results provide indications of the development of 

non-invasive nonionizing irradiation procedures to treat tumor metastasis and control microbia l 

infections. 

 

Keywords: Biomedical applications, millimeter wave, non-invasive devices, yeast 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 August 2020                   doi:10.20944/preprints202008.0436.v1

https://doi.org/10.20944/preprints202008.0436.v1


Millimeter Waves in Biological Irradiation 

The influence of millimeter wave (MMW) radiation on biological systems is a topic of 

considerable importance because of two important reasons: 1) to establish safety standards for 

the use of MMWs for communications, 2) to understand the mechanisms of interaction between 

MMW and living systems. These investigations opened the door to new potential applications 

of MMW in the field of biomedical engineering including selective targeting of cancer cells . 

MMW in the range 75-110 GHz (so called W-band) are classed as nonionizing radiation 

because of the low energy of their photons in the range of 0.3-0.4 meV. 

In medical sciences, cancer is considered one of the deadliest diseases for humans and 

is very difficult to diagnose at early stages [1]. Cancer is known to arise from accumula ted 

mutations in oncogenes leading to uncontrolled tumor cell growth [2, 3]. Currently used 

radiation therapy in cancer treatment gives rise to many detrimental side effects [2] includ ing 

the development of other more dangerous cancers due to ionizing radiation (involved in such 

treatments) resulting in mutagenesis [3]. In very recent work, we showed that the MMW 

irradiations (75–105 GHz) with a non-thermal power density of 0.2 mW/cm2 caused 

morphological changes in H1299 human lung cancer cells [4] leading to targeted mortality [5]. 

MMWs are also reported to be helpful to detect different types of cancers [6]. The MMW 

technologies are also applicable in the treatment of several diseases, like gastrointest ina l 

disorders, wound healing, remote monitoring of wounds, non-invasive detection of glucose 

levels, pain relief, diabetes, dermatitis, etc. [7, 8]. However, the mechanism of the therapeutic 

application on pathological specimens is not well understood and is one of the main obstacles 

to the wide-scale use of this technology. 

Saccharomyces cerevisiae yeast cells are frequently used as a model system for in-vitro 

studies, as yeast is the simplest eukaryotic organism with a nucleus. Many essential cellular 

processes in yeast and humans are the same, which makes yeast suitable to study basic 

molecular processes transferrable to similar biological process in humans. Characteristics of 

tumor cell growth are studied using models of yeast cell division [3, 9, 10]. Among the lower 

eukaryotic organisms, yeast is evolutionarily closer to higher eukaryotic mammalian cells than 

either bacteria or plants [11]. Humans are multicellular organisms, and their inherent cell 

biology is dependent on the cytoplasm containing proteins, carbohydrates, and lipids. About 

23% of the yeast genome is conserved with human cells, including all the corresponding 

biological functions and biochemical pathways remaining the same [11]. In the laboratory, 

yeast cells are cheap and simple to grow, culture, and experiment. Earlier studies on irradiat ion 

of aqueous suspensions of wild type Saccharomyces cerevisiae yeast culture are highly 

ambiguous. These studies reported either no change or increased/decreased rate of growth upon 

microwave irradiation of 42 GHz and 50 mW power [12, 13]. The authors reported the 

exclusion of thermal effects in such procedures by continuously monitoring temperature during 

the duration of exposure. On the other hand, MMW irradiation of yeast cells in the range of 

41.650 - 41.798 GHz for 4 h and 20 mW power found frequency sensitive results with increased 

cell growth at some frequencies and reduced at other values [14]. Another study confirmed the 

increased growth rate of yeast upon irradiation with 968 MHz for 7 h at 17 dBm power [15]. 

Results of such studies on the interaction of millimeter waves with biological samples are often 

met with inconsistence and non-reproducibility, as they do not rely on characterizing biologica l 

functions like change in genetic material or protein structure to correlate with the observed 
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effects [16]. Knowledge of the mechanism of action is needed to gain trust in the use of MMW 

technology for clinical applications. 

In this article we explore the effect of MMW (85-105 GHz) irradiation on 

Saccharomyces cerevisiae yeast as a model of eukaryotic cell division. The MMW are 

propagated using a standard pyramidal horn antenna. The radiated power density and power 

distribution across the antenna aperture are analyzed. The influence of MMW irradiation on 

yeast cells was manifested in the retarded cell growth effect. Irradiation of rad52 mutant cells 

showed that reduction in the cell growth was not due to genetic DNA damage Using a 

waveguide delivering higher energy achieved complete termination of cell division. Further, 

this study suggests possible mechanisms of retarded cell growth due to MMW exposure 

encouraging further biomedical applications in clinical settings and research work. 

 

Conditions of Cell Culture  

Budding yeast Saccharomyces cerevisiae BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 

ura3Δ0) wild type (WT) strain and its rad52 mutant strain BY4741 (MATa his3∆1 leu2∆0 

met15∆0 ura3∆0 RAD52::KanMX4) available through EUROSCARF (Frankfurt, Germany) 

were used for the irradiation. Cells were grown in standard synthetic complete (SC) liquid 

medium at a temperature of 30°C. The growth rate of both control and irradiated cells were 

measured using an absorbance plot at 600 nm measured by a standard spectrophotometer in 

units of optical density (OD). Cultures were adequately diluted to 0.1 OD using a standard 

absorbance plot at the start of experiment and incubated until they reached an OD value of 0.4 

(the point at which cells initiate the logarithmic growth phase). Cultures at 0.4 OD were diluted 

to 10000, 1000, 100 and 50 cells/μl (to determine the optimal concentration of cells and energy 

dosage). 1-2 μl volume of those solutions were dropped onto SC agar plates. Six colonies were 

seeded in two replicates: one for irradiation and another for comparison as control (sham). 

After irradiation, the cells were transferred to SC liquid medium and incubated under standard 

conditions. Growth rate of both irradiated and control (sham) yeast cells were measured 

regularly at intervals of 90 minute over a period of ~8 h to assay the effect of MMW exposure 

on physiological growth. 
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Conditions of Irradiation 

The schematic diagram of the experimental setup for MMW irradiation is illustrated in 

Fig. 1. For experiments, MMWs (85-110 GHz) were generated using the signal generator 

(Keysight technology, N5183B, 9 kHz-20 GHz), and ×6 active frequency multiplier (Quinstar 

Tech Inc., QMM-311220025). A standard gain pyramidal horn antenna (Quinstar Tech Inc., 

QWH-WPRROO) was used for MMW emission. The power of transmitted waves from the 

horn was measured using identical horn antenna and digital storage oscilloscope (Agilent 

technology, DSO-X 2004A). The well-known Friis transmission formula was employed for the 

calculation of transmitted power in the far-field region. Distribution of relative energy across 

antenna aperture was measured using open ended waveguide (Quinstar Tech Inc., QWH-

WPRROO) in the near field (Fig. 2). A detailed description of the irradiation setup was also 

described in our previous work [17].  

 

Fig. 1. Block diagram of the experimental setup for irradiation and picture of the pyramidal antenna and wave 

guide. 

The yeast cells were spotted on the Agar medium for irradiation. Cells were exposed to 

specific frequencies of 85 GHz, 95 GHz, and 105 GHz at 5dBm power over 6 hours 

respectively for each under a continuous irradiation regime. The irradiation experiment for 

each frequency was repeated six times. In order to scrutinize the effect of power and time of 

irradiation, cells were exposed at a constant frequency of 105 GHz MMW for different 

durations (5 and 6 h) and power densities (5 dBm and 6 dBm). The power levels of 5 and 6 

dBm correspond to 3.16 and 3.98 mW absolute powers, respectively. The average power 

density at the aperture of the horn antenna is shown in Table 1. 

Table 1. Average energy flux at the aperture of the antenna for different frequencies. 

Frequency 
(GHz) 

Power density 
(mW/cm2) 

Time of 
irradiation (h) 

85 1.390.03 6 

95 1.040.02 6 

105 0.830.02 6 

105 0.830.02 5 
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Fig. 2. Relative distribution of power across antenna aperture. 

 

MMW irradiation reduces the rate of cell division in a frequency dependent manner 

In our previous experiment, haploid WT cells (BY4741 strain) did not demonstrate an 

effect with respect to their growth rate and cell viability after 5-6 hours irradiation with MMW 

of 75 GHz frequency [17]. Here, we demonstrate (Figure 3a and 3b) the growth rate results of 

both WT control (sham) and irradiated cells at frequencies above 75 GHz (85, 95, 105). Both 

control and irradiated cells were subjected to the same culture conditions. The six distinct 

irradiated yeast colonies were exposed at the same time. Subsequent to the irradiat ion 

treatment; the growth rate and division of yeast cells were examined by incubating them under 

standard conditions. It is observed that the MMW irradiation at all examined frequencies affect 

the growth rate of WT yeast strain and reduces the rate of division up to 62% as compared to 

sham (control) (Fig. 3a). Delay in cell proliferation becomes significantly noticeable over 3-5 

hours of physiological incubation post-irradiation treatment. Effect of different duration of 

irradiation (5 h versus 6 h) and power densities (5 dBm versus 6 dBm) at a constant frequency 

of 105 GHz (delivering the same energy dosage) was examined subsequently. 
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Fig. 3. (a) Growth of BY4741 Saccharomyces cerevisiae (50 cells/µl) cells measured in OD units after 

irradiation for 6 hours at 5 dBm. Plots indicate mean values of growth rate of six separate yeast colonies 

exposed together at the same time (n = 6) for each frequency; Single Factor Anova analysis (** indicates 

p-value <0.01 and *** indicates p-value less than <0.001) (b) Growth of irradiated sample for different  

time durations and powers at constant frequency of 105 GHz (and constant dose energy).  

 

Figure 3b demonstrates that the inhibited cell division effect is MMW frequency and 

energy dependent. Single frequency at 105 GHz was used as it affects WT yeast cell growth to 

the same extent as for all the other examined MMW frequencies (ref. Fig 3a). The agar layer 

thickness is kept constant throughout. 

 

MMW wave irradiation does not alter genetic DNA 

The effects of irradiation were observed to be persistent in the irradiated cells even after 

termination of exposure across six separate experiments. These effects do not arise from 

thermal effects, as has been reported earlier [18]. Studies in the field of MMW therapy deems 

irradiation under 1 mW/cm2 as not to give rise to thermal effects in living cells [14]. And since 

our experiments involved a power density of about 1 mW/cm2 placing the results in a non-

thermal range, it is necessary to investigate other possible mechanism(s) responsible for the 

decreased growth rate of MMW irradiated cells. Therefore, the next step of the investigation is 

to check for the presence of genomic alteration in the irradiated cells. In this direction, we 

examined for genetic change in DNA using the rad52 mutant strain. RAD52 is a protein 

required to repair DNA double-strand breaks. This protein is absent in the rad52 mutant strains, 

and such yeast cells die upon irradiation by DNA damaging electromagnetic spectra [19, 20]. 

Both WT and mutant types of cells were exposed to 90 GHz MMW at 5dB power for 6 h and 

subsequently incubated for colony growth. It was observed that both types of cells showed 

similar colony growth profiles, demonstrating that reduced cell growth is not due to genetic 

DNA damage (Fig. 4).  
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Fig. 4. Colony growth profile of WT and rad52 mutant cells subjected to MMW irradiation and incubated at 

30°C. 

In general, non-ionizing radiations are not expected to alter DNA. Edwards et al. 

proposed a mechanism of coherent frequency-specific deposition of microwave energy on 

DNA in aqueous solution [21]. The resonance of DNA molecules with irradiated spectra can 

be calculated in terms of the absorption coefficient. 2734 base pairs (bp) supercoiled circular 

DNA, 2734 bp linear DNA, 1786 bp linear DNA, and 948 bp linear DNA was found to resonate 

with 2.55-8.75 GHz, 2.75-5.60 GHz, 4.10 GHz, and 2.65 GHz respectively [21]. The polymer 

chain length determining the structural conformation and size (globular or linear, large or 

small) are hence directly correlated to the resonant frequency. Illustratively, resonance shift 

occurs in the frequency range of 41-52 GHz upon changing the length of the haploid genetic 

material in E. coli [22]. Further, relative viscosity measurements showed that the resonance 

frequencies decreased proportionally to the enhancement of haploid genome length. Such 

resonance interactions occur energetically without causing genetic alteration. Illustrative ly, 

irradiation of HCE-T and SRA01/04 cell lines by 60 GHz at 1 mW/cm2 found no statistica l ly 

significant genotoxic effects on the nucleus [23].  

MMW interaction with water as a factor for reduced cell growth 

In the above section, we concluded that the MMW irradiation causes other non-

permanent genetic changes within the cells, which results in their reduced cell growth/divis ion. 

It is understood in cell biology that the genome encodes the genetic information for hereditary 

purposes. Leaving aside the genome, the living characteristics of cells are manifested by the 

interplay of the proteins. Water is a significant constituent of the cell cytoplasm, the site of all 

biochemical reactions which give rise to biological functions of growth, division, and genetic 

inheritance in living organisms. Water is also known to absorb electromagnetic radiation in the 

microwave and infrared spectrum [24]. Studies have looked into and reported resonance 

absorption of different ranges of wavelengths of this spectrum on biochemical and biologica l 

samples. 

A biological cell can be supposed to be a compartmentalized structure separated from 

the surrounding environment by the cell membrane. It has been reported that 65 GHz irradiat ion 

reduced the effects of heliogeophysical factors on yeast cells due to the destabilization of 

intracellular water structure [25]. Under physiological conditions, yeast cells are reported to 

have 65% water by composition [26]. Biological functions at the cellular level are affected by 

proteins, and the functionality of proteins is, in turn, determined by their molecular structure. 

Proteins are polypeptide chains composed of sequentially joined amino acids folding into the 

lowest energy conformations in their physiological environment to give rise to three-

dimensional structures. These structures are essential for the protein’s biochemical interact ions 

with other molecules which give rise to biological functions. Changes in the aqueous 

environment translate into changing the properties of biomolecules. 

The results suggest that the proteome is likely to be affected by the interaction of water 

with MMW irradiation. This accounts for the observed phenomenon of cell growth inhibit ion 

without genetic perturbation. Structurally, water is a physical participant during the collapse of 

the polypeptide chain in protein folding through hydrophobic collapse [27]. Thus, water 

interacts with proteins to affect their dynamics. Conversely, changes in the chemica l 

composition of the aqueous environment can alter the three-dimensional structure of proteins. 
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Molecular transfer model (MTM) predicts conformational changes in protein structures when 

pH changes occur in a solution using calculated partition functions of polypeptides [28]. 

Illustratively, Nitrophorin 4 (NP4) is a protein that releases nitric oxide (NO) in a pH-sensitive 

manner. NP4 remains in a closed conformation and tightly binds NO at pH 5.5 [29]. At pH 7.5, 

deprotonation occurs, changing the conformation and releasing NO. 

         Figure 5 presents absorbed power over time as a ratio of incident and reflected 

powers for cells spotted on SC agar, plain water and blank SC agar respectively. The irradiat ion 

conditions were kept constant at 85 GHz (5 dBm) for stringency of analysis.  

Fig. 5. Absorbed power as a ratio of incident and reflected power from yeast cells spotted on Synthetic 

Complete (SC) agar, blank water surface and blank Synthetic Complete (SC) agar surface respectively. 

Experiments were performed at a frequency of 85 GHz with the amplitude of 5 dBm. 

It can be seen from the figure that the sample absorbs a part of the incident power and 

the remaining is reflected. Hence, the ratio between the incident and reflected power values 

indicates the absorbed power of the sample under irradiation. We find that the yeast cells 

spotted on SC agar absorb more power as compared to plain water and blank SC agar. 

Interestingly, plain SC agar reflected most of the incident power. The experiment demonstrates 

that cells have a high absorbance of MMW irradiation because they are made mostly of water 

in a confined volume.  
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In order to ascertain the relation between MMW absorption and size of sample 

irradiated as indicated from the previous experiments, different volumes of water were 

irradiated using horn antenna. Irradiation conditions of frequency, power and duration of 

exposure were kept constant as mentioned above to maintain stringency of analyses. Figure 6a 

shows the temperature rise measured using a digital thermometer during exposure involving a 

horn antenna on a large volume of water (6500 µl). A 2°C rise of temperature is associated 

with the 6 hours duration of exposure. Figure 6b shows the temperature rise involving a horn 

antenna on a smaller volume of water (250 µl). The power density emitted by the antenna is 

given in Table 1. Reduction in the volume of the irradiated sample led to an increase of 1°C in 

the rate of temperature rise (Fig. 6b). Figure 6c shows the rise of temperature during exposure 

involving a waveguide on the small volume of water (250 µl) at 306.6 mW/cm2. Contrary to 

the expectation of the waveguide causing thermal ablation due to higher power density, Figure 

6c demonstrates that thermal effects were practically absent in our irradiation setup. Therefore, 

under conditions of constant frequency and power; the rise in temperature is inverse ly 

proportional to the volume of the sample irradiated. Finally, this experiment also confirms the 

hypothesis that biological cells exhibit high absorbance of MMW irradiation being constituted 

of water in a confined volume. The experiment demonstrates that MMW irradiation under the 

listed parameters raises temperatures up to 22 ℃ and does not cause thermal stress on yeast 

cells which grow at a physiological temperature of 30 ℃. 

 

Fig. 6 Comparison of temperature rise during MMW exposure involving horn antenna and wave guide. Indicated 

volumes of water were irradiated as illustrated. (a) Temperature rise of 6500 µl water during MMW exposure  at 

– 1.39 mW/cm2. . (b) Temperature rise of 250 µl water during MMW exposure at – 1.39 mW/cm2.  (c) 

Temperature rise of 250 µl water during MMW exposure at – 306.6 mW/cm2. Frequency, power and duration of 

exposure were kept constant at the values indicated. 

A wave-guide provides a more focused beam of irradiation as compared to a horn 

antenna (Figires 1 and 6). We performed MMW irradiation (85 GHz, 5 dBm) of 
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Saccharomyces cerevisiae BY4741 WT yeast cells using an open-ended waveguide (see 

methods). Single frequency at 85 GHz is used because it affects WT yeast cell growth to the 

same extent as for all the other examined MMW frequencies (ref. Fig 3a). The thickness of 

agar medium and the number of cells were kept the same as those mentioned in the previous 

experiments. Cells were observed to be liquidated within 3 - 4 hours of treatment with 6.132 

mW power and 306.6 mW/cm2 power density. Further incubation of these cells under 

physiological conditions (at 30 °C for 2 days) did not yield any colony growth. The experiment 

demonstrates that MMW irradiation using an open-ended waveguide at a power density 300 

times stronger than the one involving a horn antenna (ref. Fig. 3) completely terminates cell 

growth and division. Previously, we have reported human lung cancer cell specific-effect of 

MMW irradiation [4, 5, 18]. The treatment inhibited cancerous cell proliferation without 

affecting normal cell division of physiological tissue. The mechanism of this effect is partially 

explained in this study using the BY4741 Saccharomyces cerevisiae yeast strain as a model 

system. This mechanism of targeted cell growth inhibition allows it to be adapted for treatment 

of tumor metastasis. 
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Conclusions 

 In this study, we explored the mechanism of MMW (85-105 GHz) irradiation on cell 

division using Saccharomyces Cerevisiae yeast cells as a model system. A standard horn 

antenna was used for MMW propagation, and the radiated power was measured in the far-field 

region using a similar antenna. The use of a horn antenna guarantees the frequency and power 

stabilities of the output signal. A comparative analysis of changes in the growth rate and cell 

viability of the control versus irradiated cells were performed. MMW irradiation decreases the 

growth rate of irradiated cells at a power density of about 1.0 mW/cm2. Our results demonstrate 

that non-thermal MMW irradiation has the potential for future use in treating pathogenic funga l 

infections. Additionally, we study and report no mutagenic effects arising from this 

nonionizing radiation therapy. Our experiments demonstrate that the MMW irradiation allows 

the cells to retain their unmodified genetic material and likely affects the proteome by 

interacting with the water molecules. This accounts for the observed phenomenon of inhib ited 

cell growth without genetic perturbation.  
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