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Abstract
Wound treatment, especially for chronic and infected wounds, has been a permanent socio-economical challenge. This 
study aimed to investigate the ability of red light at 661 nm to accelerate wound healing an in vitro wound model using 3T3 
fibroblasts. The purpose is further specified in clarifying the mechanisms of wound closure by means of intracellular ROS 
production, proliferation and migration of cells, and cellular orientation. Illumination effects of red light from a diode laser 
(661 nm) at different doses on 3T3 cell viability was assessed via MTT assay and tested in a scratch wound model. Wound 
closure rates were calculated by image analysis at 0, 24, and 48 h after laser treatment. ROS production was monitored and 
quantified immediately and 24 h after the treatment by fluorescence microscopy. Cellular orientation was quantified by image 
analysis. No phototoxic energy doses used and increased cell viability in most of the groups. Scratch assay revealed an energy 
interval of 3 – 4.5 J/cm2 that promote higher wound healing rate 24 h post treatment. An increase in ROS production was 
also observed 24 h post irradiation higher in the group with the highest wound healing rate. Also, cellular orientation toward 
the margin of the wound was observed and quantified after irradiation. Low power laser light at 661 nm activated both the 
migration and proliferation in the in vitro model used, providing evidence that it could also accelerate wound healing in vivo. 
Also, ROS production and cellular orientation seem to play an important role in wound healing process.
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Introduction

The skin is an organ with a multi-functional role for the 
organism, such as protecting the human body from external 
factors and sustaining hydration levels [1]. Hence, the loss 
of its integrity due to a cutaneous wound could negatively 
affect the human body. The wound healing process is known 

for its complexity and the variety of mediators and reac-
tions that take place during four distinct but also overlap-
ping stages: hemostasis, inflammation, proliferation, and 
remodeling [2, 3]. However, several risk factors (diabetes, 
infections, smoking) can cause complications and impair 
wound healing, leading to chronic wounds [4]. Accelerat-
ing the wound repair in order to avoid such problems has 
been a challenge over decades, and several treatments have 
emerged, for example, wound dressings, tape stripping, or 
laser irradiation [5].

Wound treatment with irradiation in the red region of the 
electromagnetic spectrum has drawn the attention of the sci-
entific community since 1993. Since then, numerous studies 
have been published using irradiation with red light in com-
parison to other wavelengths in the visible spectrum. Low 
power laser therapy uses light in the red and mid-IR region 
of the spectrum to treat wounds in a non-thermal way [6]. 
The mechanism of action of the red light on wound healing 
is related to the excitation of skin’s endogenous chromo-
phores, including mitochondrial enzymes, which takes place 
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after the absorption of radiation from the biological tissue 
[7, 8]. This results in a cascade of events such as reactive 
oxygen species (ROS) generation, increased ATP synthesis, 
and calcium oscillations, leading to improved wound heal-
ing [9–11].

Several in vitro and in vivo studies have showed the ben-
efits of red light in the wound healing process [12–15]. How-
ever, the heterogeneity of experimental or clinical protocols 
concerning cells and animals and a variety of experimental 
irradiation parameters, such as source type, wavelength, 
fluence, irradiance, pulse duration, repetition regimen, and 
therapy duration used, have limited the photobiomodulation 
(PBM) clinical use due to lack of standardized clinical proto-
cols. Another important characteristic of PBM is its biphasic 
dose response (Arndt–Schulz law). According to this law, 
very low doses of light have no effect and higher doses have 
beneficial effect until a plateau is reached. Further increase 
of the light dose yields in decrease of the beneficial effects 
until the “no effect” level is reached. Additional increase 
of the energy dose can be even harmful for the biological 
system [16].

Fibroblasts are cells that play a pivotal role in wound 
healing. They are key factors for the proliferative phase 
since they mediate migration, proliferation, and differentia-
tion of keratinocytes. In addition, fibroblasts from the area 
surrounding the wound migrate and synthesize collagen, a 
major event of proliferation stage, which leads to the forma-
tion of granulation tissue [17].

The aim of this study was to examine the ability of red 
light to enhance wound healing in a wound scratch model 
of 3T3 fibroblasts and to determine the optimum conditions 
under which this is facilitated. For this purpose, a diode laser 
(661 nm) was used and different power and energy rates have 
been tested for their ability to promote fibroblasts prolifera-
tion and migration. Furthermore, the generation of ROS was 
explored with intention to elucidate their role in wound heal-
ing process. Image processing and analysis methods have 
been used to quantify wound closure rate, ROS production, 
and cellular orientation as a result of PBM.

Materials and methods

Cell culture

Μice skin 3T3 fibroblasts were grown in 25  cm2 culture 
flasks in Dulbecco’s modified Eagle’s medium + 4.5 g/L 
D-glucose, L-glutamine (Gibco), supplemented with 1% 
antibiotic–antimycotic (Gibco), 0.5% penicillin–strepto-
mycin (Gibco), 0.07% gentamicin solution 1% (Thermo 
Fisher Scientific), and 10% FBS (Qualified HI/Pen-Str 0.5%, 
Gibco). Cell cultures were incubated at 37 °C in 5%  CO2 
with 85% humidity. Cells were washed with PBS 1 × (Gibco) 

and detached with 700 mL/25  cm2 Trypsin–EDTA 0.05 
(Gibco).

Irradiation device

Irradiation was performed using a 661-nm diode laser 
system (FWHM = 5 nm) coupled to an optical fibre and a 
light diffuser (GCSLS-10-1500 m, China Daheng Group) 
in order to provide uniform circular illumination spot. At 
each experiment, irradiation area was centred on the well of 
interest. Power output at cellular level was assessed using a 
power meter before and after cellular irradiation. Cell area 
was homogenous irradiated with the light diffuser with a 
variability in power less than 2% as measured with the power 
meter in different points of the irradiated area.

Irradiation parameters, concerning beam and dose 
aspects, are very important and should be either measured 
during each experiment at cellular level or appropriately 
reported to facilitate reproducibility[18].

Laser irradiation

Cells were seeded in 12-well plates and incubated for 24 h. 
After the infliction of the scratch, cells were irradiated in 
300 μL fresh DMEM with the laser (wavelength 661 nm) 
from above with the well plate lid off. The different groups 
were treated with power output density of 5, 10, and 15 mW/
cm2 for 5, 8, and 13 min, respectively (Table 1). The process 
was performed in the dark in order to avoid polychromatic 
light. A well plate of non-irradiated cells, which was treated 
in the same way, was used as control.

Cell viability evaluation and MTT assay

Viability of the cells was assessed by MTT {3-(4,5-dimeth-
ylthiazol2-yl)-2,5-diphenyl-2H-tetrazolium bromide, 
Sigma} assay. 24 h after the irradiation cell medium in each 
well was replaced with MTT solution (1 mg/mL in DMEM), 
and cells were incubated for 3 h at 37 °C in 5%  CO2 with 
85% humidity. Then, MTT media was removed and the 
formazan crystals that had been produced were solubilized 
with 150 μL DMSO (dimethyl sulfoxide, Sigma). Absorb-
ance was measured at 570 nm using Epoch 2 Microplate 
Reader (BioTek Instruments). Blank values were measured 
in wells with DMSO without cells. The relative cell viability 

Table 1  Irradiation fluence of different groups

5 min (300 s) 8 min (480 s) 13 min (780 s)

5 mW/cm2 1.5 J/cm2 2.4 J/cm2 3.9 J/cm2

10 mW/cm2 3 J/cm2 4.8 J/cm2 7.8 J/cm2

15 mW/cm2 4.5 J/cm2 7.2 J/cm2 11.7 J/cm2



Lasers in Medical Science           (2023) 38:27  

1 3

Page 3 of 9    27 

was determined as cell survival percentage compared to cells 
that were treated with complete media, which were used as 
control. All the experiments were performed five times.

Scratch assay

The fibroblasts were cultured in 12-well plates (1.5 ×  105 
cells/well) for 24 h until they form a confluent layer. The 
scratch was inflicted across the cell layer with a 100-μL 
sterile pipet tip. The medium was removed, and the cells 
were washed with PBS in order to remove debris. Next, 
300 μL DMEM was added and irradiation was performed. 
Then, DMEM was added till 1 mL per well and the plates 
were put back in the incubator. Images were acquired with 
an inverted light microscope [Olympus ΙX‐81, (Olympus 
Optical Co., GmbH)] coupled to a CCD camera (XC-30, 
Olympus} 0, 24, and 48 h post irradiation. All the experi-
ments were performed in triplicate. Image acquisition was 
performed using the AnalySIS getIT (Olympus Soft Imaging 
Solutions, GmbH) software. The Image J software was used 
to measure the area of the scratch. The rate of wound closure 
was calculated by measuring the area of the scratch, which 
was not covered with cells 24 and 48 h after irradiation.

Evaluation of ROS production in cells

The production of ROS in 3T3 cells as a result of the irra-
diation with red light was examined 0 and 24 h post irra-
diation. In order to measure ROS production chloromethyl-
2′,7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA, 
Molecular Probes) was used. The probe was dissolved in 
EtOH. 10 μg of this solution was diluted with DMEM to 
obtain 5 μΜ of CM-H2DCFDA. Cells were seeded onto cov-
erslips in culture disks and incubated for 24 h. That solution 
was added to the cells right after or 24 h post irradiation. 
Coverslips were incubated in the dark for 30 min. Cover-
slips with non-irradiated cells were used as control. After the 
incubation, cells were washed with PBS and the coverslip 
was placed in a specially designed perfusion chamber allow-
ing live cell imaging [9]. Cells were observed under an epi-
fluorescent upright microscope Olympus BX‐50 (Olympus 
Optical Co., GmbH) using a 40 × objective lens (UPlanFl, 
N.A. = 0.75, Olympus) coupled to a CCD camera (XC-30, 
Olympus). The configuration of the filter cube was U‐MNB 
excitation BP470‐490, dichroic mirror DM500, and emis-
sion BA515. Since CM-H2DCFDA is light sensitive, all the 
experiments were conducted in the dark.

Image analysis and ROS quantification

ROS levels were quantified according to the method 
described in [19]. In brief, images were converted to 8 bit 
grayscale ones. Five different circular homogenous regions 

of interest (ROI) were selected from each cell, and the mean 
intensity of each ROI was calculated with Image J. The same 
procedure was performed for many cells in each experimen-
tal condition in order to provide a sufficient sample from 
statistical point of view, and the mean value of all the meas-
urements was calculated. The intensity of the images is pro-
portional to the fluorescence intensity of the sample, thus is 
proportional to the amount of the produced ROS.

Cellular orientation

Orientation and isotropic properties of cells were character-
ised using OrientationJ, an ImageJ plug-in [20, 21]. Orienta-
tion was visualised and quantified based on the evaluation 
of the structure tensor in the local neighbourhood for every 
pixel. Orientation representation, quantitative orientation 
measurement, and distribution of orientations were provided 
by the plug-in. Orientation was visualized as colour images 
with the orientation encoded in a hue-saturation-brightness 
map where hue is orientation, saturation is coherency, and 
brightness is the same as the source image. Furthermore, 
results were used to plot the circular histogram of the nor-
malised distribution of local orientations in every image. 
The peaks of this histogram point to main cellular orienta-
tions along the observed image field.

Statistical analysis

Data were analysed with the SPSS software (IBM SPSS 
Statistics, Version 20). Shapiro-Wilks test was used to 
determine the normality of the data, and one-way analysis 
of variance (ANOVA) with LSD post hoc test was used to 
find differences between groups. Statistical significance was 
considered as P < 0.05.

Results

Cell viability

The effect of red light under different conditions (power 
output density, irradiation time) on fibroblasts 24 h after the 
irradiation is shown in Fig. 1. As shown in the figure, nei-
ther of the light doses used caused toxicity on the cells. On 
the contrary in all cases, cell viability was higher than the 
non-irradiated control. Furthermore, the viability increase 
was statistically significant in all groups except groups 
13 min 10 mW/cm2 and 13 min 15 mW/cm2, which are the 
groups where the highest fluence rates were used. Since all 
the doses used presented no toxic effect, we proceeded in 
scratch assay experiments for these irradiation conditions.
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Evaluation of treatment with red light of various 
doses in a scratch wound healing assay

The scratch assay was performed, and images were acquired 
0, 24, and 48 h after the treatment (Fig. 2). Irradiated groups 
were compared with the non-irradiated control group. The 
effect of red light on wound closure rate can be seen in the 
graph shown in Fig. 3. As shown in the graph, 24 h after 
the treatment, doses of 5 mW/cm2 for 13 min (3.9 J/cm2), 
10 mW/cm2 for 5 (3 J/cm2), and 8 min (4.8 J/cm2) and 15 
mW/cm2 for 5 min (4.5 J/cm2) show statistically significant 
better wound healing rate compared to the control. Further-
more, the group irradiated with 10 mW/cm2 for 8 min (4.8 J/
cm2) shows statistically significant difference of the wound 
healing rate after 24 h compared to the rest of the groups. 
Forty-eight hours after irradiation, no significant results 
were observed as in groups wound closure was almost the 
same with the control group.

ROS production in 3T3 cells after the treatment 
with Red light at 661 nm

In order to investigate ROS production in the irradiated cells, 
three different groups were selected. The control group, 
the group that showed the greater wound closing rate, and 
the one that showed the lesser rate were chosen for further 
investigation of the formation of intracellular ROS and their 
contribution to wound closure process. Assessment and 
quantification of ROS production were examined 0 and 24 h 
after the treatment. In Fig. 4, intracellular ROS levels are 
presented in the fluorescent images. Immediately after the 
treatment, no significant change is noticed in the ROS levels 
between the control and the irradiated groups. However, 24 h 
after the irradiation, the amount of intracellular ROS is 3 
times higher at group treated the beneficial dose of 10 mW/
cm2 for 8 min compared to the other groups as revealed by 
image analysis (Fig. 4).

Fig. 1  Cell viability results of 
the different groups 24 h after 
irradiation on 3T3 fibroblasts. 
The data are expressed as mean 
of five experiments. The error 
bars present standard deviation. 
*P < 0.05 represents statistically 
significant differences between 
experimental and non-irradiated 
control groups
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Fig. 2  The scratch assay to 
investigate the wound healing 
of 3T3 fibroblasts irradiated 
with different doses of red light 
(661 nm). Dotted lines indicate 
the area of the scratch at 0, 24, 
and 48 h after the treatment. 
Pictures above present the 
groups with the better heal-
ing rate and the non-irradiated 
control group
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Cellular orientation

In the images, 24 h after irradiation with red light, a dif-
ference in the direction of the cells migrating to the wound 

centre was noticed between the control and the groups 
irradiated with 15 mW/cm2. In order to investigate the sig-
nificance of this hypothesis, the orientation of cells at the 
area near the wound margin was visualised and quantified, 

Fig. 3  Effect of red light 
irradiation in 3T3 cells. Scratch 
wound area was measured 
24 and 48 h post treatment. 
*P < 0.05 represents statistically 
significant differences between 
experimental and non-irradiated 
control groups. **P < 0.05 rep-
resents statistically significant 
differences between 10 mW/cm2 
for 8 min (4.8 J/cm2) group and 
other irradiated groups
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Fig. 4  a Intracellular ROS 
levels in 3T3 cells 0 and 24 h 
after the treatment with red light 
compared to the non-treated 
control. b Intracellular ROS 
levels 0 and 24 h after the irra-
diation with red light at 661 nm. 
*P < 0.05 represents statistically 
significant differences between 
experimental and non-irradiated 
control groups
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using the ImageJ plug-in OrientationJ. In Fig. 5, brightfield 
images of control group (A) and irradiated group with 15 
mW/cm2, 5 min (B) are shown. In the same image (C and 
D), hue, saturation, and brightness (HSB) colour maps are 
displayed, obtained from the brightfield images after image 
processing and analysis with OrientationJ. These maps pro-
vide spatial information of cellular orientation as the same 
orientation angle is assigned to the same colour. In the third 
row, the corresponding circular histograms of the normal-
ised distribution of local orientations are shown providing 
quantitative information of the orientation angles. During 
healing, cells of the control group demonstrate an isotropic 
distribution of orientations with no favourable orientation, 
as shown from both colour map (Fig. 5C) and circular histo-
gram of orientations (Fig. 5D). On the other hand, irradiated 
cells present areas of the same orientations, same colour 
in the HSB colour map (Fig. 5D). Cells near wound mar-
gin appear elongated and oriented towards the wound. The 

circular histogram of irradiated cells (Fig. 5F) demonstrates 
that there are 3 peaks that correspond to 3 favourable ori-
entation angles, around (− 80°, − 90°), (80°, 90°) that are 
the same due to symmetry and 0°. Orientation of 0° cor-
responds to cells near the wound margin, appears green to 
HBS maps, while 90° to cells inside the wound, appears red 
to the colour map. No significant orientation was observed 
in any other experimental groups at least for the time points 
that the images were acquired.

Discussion

Wound healing is known to be a convoluted process, where 
many factors, that can or cannot be modified, often endan-
ger its course. These risk factors display a great economical 
problem for physicians that has to be overcome by develop-
ing efficient and practical treatment practices [22]. Recently, 

Fig. 5  A, B Initial bright field 
images of cells. C, D Hue, satu-
ration, and brightness (HSB) 
colour maps obtained from the 
brightfield images after image 
processing and analysis. These 
maps assign the same orienta-
tion angle to the same colour. 
E, F Circular histograms of the 
normalised distribution of local 
orientations of the images. On 
the left column, control cells 
are shown, while on the right, 
cells irradiated with 661 nm, at 
15 mW and 5 min. Images were 
acquired 24 h after scratch assay

A B 

C D
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therapies that utilize light emerging from lasers at the visible 
area have been developed in order to face the challenge of 
enhancing wound healing [23]. Specifically, red light has 
shown potential in accelerating wound healing by promot-
ing proliferation of different cells such as fibroblasts and 
keratinocytes [24, 25]. These findings suggest a promis-
ing approach against delayed wound healing that leads to 
chronic wounds, since impaired wound healing is connected 
to dysfunctions in the proliferation of key cells. These events 
lead to problematic immune function followed by decreased 
angiogenesis on the wounded area [26].

In the current study, 3T3 mice fibroblasts were used, 
based on the role of this type of cells on a healthy wound 
healing. Proliferation and migration of fibroblasts are impor-
tant for formation of ECM (extracellular matrix) and granu-
lation tissue [27, 28]. The present study is an attempt to 
optimize laser parameters such as wavelength, power den-
sity, and fluence rate that could lead to faster wound closure. 
Fluence rates from 1.5 to 11.7 J/cm2 were tested with dif-
ferent combinations of laser power density and irradiation 
time. Since neither of the doses tested reduced cell viability, 
all of them were examined further in a scratch assay model. 
The scratch assay results demonstrated that doses of 5 mW/
cm2 for 13 min (3.9 J/cm2), 10 mW/cm2 for 5 (3 J/cm2), and 
8 min (4.8 J/cm2) and 15 mW/cm2 for 5 min (4.5 J/cm2) 
seem to improve wound healing. These suggest that there is a 
beneficial fluence interval between 3 and 4.8 J/cm2 that posi-
tively affects fibroblasts in the selected wound model going 
along with findings of previous works [24, 29]. For fluence 
rates outside this range, no significant effect was observed. 
Under the present conditions, no inhibitory effect found and 
the results seem to be independent of power density values. 
Among the groups that showed faster wound closure the 
group of 10 mW/cm2 for 8 min (4.8 J/cm2) presented statis-
tically significantly higher wound closing rate compared to 
all other groups, suggesting that fluence around 4.8 J/cm2 
approaches the optimum dose in the present experimental 
conditions. These results correspond with those of Ayuk 
[6] and Mehvahr [15] who used fluence rates of red light 
between 4.5 and 5 J/cm2 in their wound healing experiments.

Based on the results of cell viability MTT tests, the 
absorbance of all the experimental groups was higher than 
the control, pointing to higher cell population. This indicates 
that red light at 661 nm in the specific fluence rate could 
promote fibroblast proliferation. Interestingly, even though 
the group with the highest cellular proliferation (15 mW/cm2 
for 5 min (4.5 J/cm2)) accelerated wound closure, it did not 
present the highest wound closure rate. The group of 4.8 J/
cm2 fluence rate although it did not present the highest pro-
liferation, it demonstrated the fastest wound healing. Also, 
there were experimental groups that showed higher prolif-
eration compared to control but did not present faster wound 
healing. Therefore, it can be hypothesized that another factor 

possibly fibroblast migration is also engaging with the clo-
sure of the scratch wound model. This hypothesis is further 
supported by the work of Houreld [12] and Sperandio [30] 
that suggested the role of red light on cell migration. All 
these findings suggest that the contribution of both migration 
and proliferation is necessary to promote wound healing.

PBM is believed to enhance wound healing via an 
increase in ROS production which leads to higher ATP lev-
els [31]. It is well known that high levels of ROS have been 
linked with a plethora of negative implications on the cell 
survival and could impair wound healing [32, 33]. However, 
some studies indicate their beneficial role in the prolifera-
tion of cells, when ROS production remains under certain 
levels [34, 35]. Specifically, when low levels of ROS are 
produced for a small amount of time, they can act as a trig-
ger and promote proliferation of fibroblasts and the produc-
tion of collagen and consequently enhance wound healing 
[36, 37]. In the present study, the intracellular production 
of ROS was examined and quantified immediately and 24 h 
after irradiation with red light. Interestingly, the levels of 
ROS right after the treatment show no difference between 
the irradiated groups and the control, whilst 1 day after the 
treatment, the group that was irradiated with power output 
density of 10 mW/cm2 for 8 min showed vastly higher intra-
cellular ROS levels compared to the other groups, suggesting 
that ROS production is not an abrupt response to irradiation 
but it starts happening at a time point between 0 and 24 h 
after the therapy. In one of our previous studies, we have 
shown that HFFF2 fibroblasts responded to red laser stim-
ulation (1.5 mJ/cm2) with an immediate ROS generation. 
These findings agree with those of Pavlov et al. who found 
in a mouse PBM model that ROS generation was higher 
than the control after the 7th day of the treatment [38]. On 
the other hand, irradiation with red light of 15 mW/cm2 for 
13 min presented different results. The levels of intracel-
lular ROS seem similar right after the irradiation and 24 h 
later. A possible explanation could be that between the 24 h 
after the irradiation, ROS reached threating levels for the 
cell survival, cellular antioxidant defense mechanisms were 
activated, and the levels were restored to normal. In addition, 
the inability of red light at higher fluence rates to accelerate 
wound healing could be due to the levels of oxidative stress 
produced. It looks like the higher fluence rates produce a 
stronger oxidative stress stimulating intracellular antioxidant 
mechanisms that inhibit the proliferation and migration of 
the fibroblasts.

Concerning orientation, image processing and analysis 
provided both spatial and quantitative information of orien-
tation angles. It was noticed that cells of the control group 
seem to have a rather isotropic distribution with no favour-
able orientation angle. Interestingly, red light caused a cel-
lular orientation towards the margin of the wound. Accord-
ing to our knowledge, it is the first time that such a cellular 
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response to laser stimulation was reported. In a recent study 
on wound healing, electric field was used to provide direc-
tional signals for the cells to migrate to the wound centre. 
This directional migration showed that cells had similar 
shapes and common arrangement, which led to faster wound 
healing [38]. These results contribute to the hypothesis that 
causing a directional cell migration could promote wound 
healing. The ability of red light to stimulate cellular organi-
zation and orientation towards wound seems to be favourable 
of faster wound healing of the irradiated group.

According to our knowledge, it is the first study that uses 
3T3 mice fibroblasts in order to shed light on low power red 
laser light in terms of wound healing process. Another posi-
tive aspect of the present study is the report and imaging of 
ROS generation at the single cell level, providing also the 
spatial information as a result of photobiomodulation. At last 
but not least, no cellular orientation after red light low-power 
irradiation had been reported since now as this information 
cannot be obtained in cell population studies.

Originally, a large population of cells is the subject of 
cell analysis and the obtained results are the average of their 
conduct. Nevertheless, heterogeneity makes its appearance 
throughout the population and important information related 
to single individual cells is lost. Additionally, spatial infor-
mation on biomolecules is also extinct in cell population 
studies although it has a strong connection to biological pro-
cessing that actually occurs at the single cell level.

The findings of the current study aimed to contribute to a 
better understanding of the beneficial role of laser stimula-
tion to wound healing. As other important key players in 
wound healing are keratinocytes, it would be of special inter-
est to study and reveal their response to red low power laser 
stimulation. Moreover, further studies should be carried out 
to translate current findings to in vivo experiments in small 
animals wound models.

Conclusions

This paper aimed to investigate the ability of low power 
laser light (661 nm) to accelerate wound healing in a wound 
scratch model of 3T3 fibroblasts. Image processing and 
analysis were engaged to quantify the observed changes by 
means of wound closure rate, ROS production, and cellular 
orientation. Different laser power and energies were exam-
ined in order to optimize laser parameters. The study of cell 
proliferation and wound closure rate revealed the contribu-
tion of both proliferation and migration in wound closure 
after laser irradiation. No ROS production was observed 
immediately after laser stimulation, but interestingly, a 
large amount of ROS was detected 24 h after irradiation 
in the group that showed the fastest wound close rate in 
our experimental conditions. Finally, cellular orientation 

towards the margin of the wound was observed revealing 
one rather unknown step in the wound healing procedure. As 
a conclusion, the results of this research gave a better insight 
into the role of low power red laser on acceleration of wound 
healing and its underling mechanisms.
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