
fnins-16-942536 July 23, 2022 Time: 18:49 # 1

TYPE Review
PUBLISHED 28 July 2022
DOI 10.3389/fnins.2022.942536

OPEN ACCESS

EDITED BY

Fahmeed Hyder,
Yale University, United States

REVIEWED BY

Urs Albrecht,
Université de Fribourg, Switzerland
Praveen Arany,
University at Buffalo, United States
Farzad Salehpour,
University of Texas at Austin,
United States

*CORRESPONDENCE

John Mitrofanis
john.mitrofanis@me.com

SPECIALTY SECTION

This article was submitted to
Neuroenergetics, Nutrition and Brain
Health,
a section of the journal
Frontiers in Neuroscience

RECEIVED 12 May 2022
ACCEPTED 08 July 2022
PUBLISHED 28 July 2022

CITATION

Moro C, Valverde A, Dole M,
Hoh Kam J, Hamilton C, Liebert A,
Bicknell B, Benabid A-L, Magistretti P
and Mitrofanis J (2022) The effect
of photobiomodulation on the brain
during wakefulness and sleep.
Front. Neurosci. 16:942536.
doi: 10.3389/fnins.2022.942536

COPYRIGHT

© 2022 Moro, Valverde, Dole, Hoh
Kam, Hamilton, Liebert, Bicknell,
Benabid, Magistretti and Mitrofanis.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

The effect of
photobiomodulation on the
brain during wakefulness and
sleep
Cecile Moro1, Audrey Valverde1, Marjorie Dole1,
Jaimie Hoh Kam1, Catherine Hamilton2, Ann Liebert3,
Brian Bicknell4, Alim-Louis Benabid1, Pierre Magistretti1,5 and
John Mitrofanis1,6*
1FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France, 2Well Red Pty Ltd.,
Launceston, TAS, Australia, 3Governance and Research Department, Sydney Adventist Hospital,
Sydney, NSW, Australia, 4Faculty of Health Sciences, Australian Catholic University, Sydney, NSW,
Australia, 5Biological and Environmental Science and Engineering Division, King Abdullah University
of Science and Technology, Thuwal, Saudi Arabia, 6Institute of Ophthalmology, University College
London, London, United Kingdom

Over the last seventy years or so, many previous studies have shown that

photobiomodulation, the use of red to near infrared light on body tissues, can

improve central and peripheral neuronal function and survival in both health

and in disease. These improvements are thought to arise principally from

an impact of photobiomodulation on mitochondrial and non-mitochondrial

mechanisms in a range of different cell types, including neurones. This

impact has downstream effects on many stimulatory and protective genes.

An often-neglected feature of nearly all of these improvements is that they

have been induced during the state of wakefulness. Recent studies have

shown that when applied during the state of sleep, photobiomodulation

can also be of benefit, but in a different way, by improving the flow

of cerebrospinal fluid and the clearance of toxic waste-products from

the brain. In this review, we consider the potential differential effects

of photobiomodulation dependent on the state of arousal. We speculate

that the effects of photobiomodulation is on different cells and systems

depending on whether it is applied during wakefulness or sleep, that it may

follow a circadian rhythm. We speculate further that the arousal-dependent

photobiomodulation effects are mediated principally through a biophoton –

ultra-weak light emission – network of communication and repair across

the brain.
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Introduction

The brain has two very distinct global states of activity,
wakefulness and sleep; it becomes quite a different functional
organ in either state. In the state of wakefulness, the brain is
in a conscious mode, being receptive to, and interactive with,
the environment. It is occupied with orchestrating executive
function, that is, attention, perception, cognition, memory and
skilled movements. In the state of sleep, the brain is in an
unconscious, but arousable mode and is far less receptive to the
environment. In this state, the brain assumes a house-keeping
function, disposing of all the metabolic debris and waste-
products that have accumulated during the day before they
reach toxic levels. This fluid-mediated detoxification is under
circadian control (Iliff et al., 2012; Aspelund et al., 2015; Eugene
and Masiak, 2015; Jessen et al., 2015; Louveau et al., 2015, 2017;
Brodziak et al., 2018; Plog and Nedergaard, 2018; Hablitz et al.,
2020; Mestre et al., 2020; Nedergaard and Goldman, 2020; Reddy
and van der Werf, 2020; Yan et al., 2021).

Many previous studies have shown that
photobiomodulation, the application of specific wavelengths
of light (∼λ = 600–1000) to body tissues, has a major effect
on the brain, influencing neuronal function and survival in
both health and disease. That photons can stimulate a chemical
change in neurones, that light energy can be converted to
metabolic energy with a subsequent influence on the function
and survival of the neurones. Photobiomodulation is not
a targeted treatment; it can potentially help any neurone
in distress, whether affected by neurodegenerative disease,
psychiatric illness, or traumatic injury (Muili et al., 2012;
Cassano et al., 2015; Naeser and Hamblin, 2015; Hamblin,
2016; Mitrofanis, 2019; Figueiro Longo et al., 2020; Naeser
et al., 2020). Although not stated explicitly in the bulk of these
previous studies, many – if not all – of the photobiomodulation
treatments were undertaken during daylight hours, when
the experimental animals or human subjects were in a
state of wakefulness. There are, however, recent indications
that photobiomodulation, when applied during the state of
sleep, has a somewhat different effect; that during this state,
photobiomodulation stimulates the house-keeping function
of the brain, by improving the clearance of fluid-filled waste-
products and debris from the brain and into the lymphatic
system (Semyachkina-Glushkovskaya et al., 2021b).

In the review that follows, we will explore what is known
currently of the impact of photobiomodulation on the brain
in the state of wakefulness and in the state of sleep. We will
then offer the speculation that photobiomodulation may have
a different effect on brain function depending on what state
it is in, whether wakefulness or sleep, that it may follow a
circadian rhythm. Finally, we will consider the key issue of
why photobiomodulation has an impact on brain function
in the first place and speculate further that biophotons, the

ultra-weak endogenous light emitted by cells, may form the
key link between the two distinct, arousal-dependent, effects of
photobiomodulation.

Photobiomodulation and
wakefulness

In almost all previous reports on the impact of
photobiomodulation on body tissues, stretching back nearly
seventy years, the treatment has been applied when the
experimental animals or human subjects were in the state of
wakefulness. These reports have shown many beneficial effects
of photobiomodulation, on the functional activity of neurones
in health and disease, including the protection of neurones in
disease. There have also been many previous studies exploring
the photobiomodulation-induced mechanisms that underpin
these effects on neuronal function and survival. These issues
will be considered, in turn, below.

Photobiomodulation influences
functional activity

Most – if not all – of the reports that have examined the
functional activity of neurones in the brain after application of
photobiomodulation have been from an external, transcranial
device. The light issued from such devices has been shown by
many previous studies to penetrate, at the very least as far as the
cerebral cortex, approximately ten to fifteen millimeters beneath
the cranial surface (see Hamblin, 2016; Mitrofanis, 2019).
Indeed, transcranial photobiomodulation to normal, healthy
humans – both young and older – has been reported to improve
high-level cognitive functions, in terms of reaction times or
performances to a range of learning and memory retrieval tasks
(Barrett and Gonzalez-Lima, 2013; Gonzalez-Lima and Barrett,
2014; Blanco et al., 2017a,b; Grover et al., 2017; Jahan et al.,
2019).

With increasing momentum recent reports, using a
range of biological measures, have shown that transcranial
photobiomodulation can influence brain and, in particular,
cortical activity. After application of photobiomodulation
to the motor cortex in healthy individuals, transcranial
magnetic stimulation-induced hand motor-evoked potentials
are very much reduced in size (Konstantinović et al., 2013).
Electroencephalography (EEG) studies have reported that
photobiomodulation influences the resting power spectrum
of the different brain waves considerably, with increases
evident in the α, β, and γ waves, but decreases in the δ

and θ ones (Vargas et al., 2017; Wang et al., 2017, 2019,
2021; Jahan et al., 2019; Zomorrodi et al., 2019; Shan et al.,
2021). With fMRI (functional magnetic resonance imaging),
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photobiomodulation has been found to affect brain activity, in
particular after undertaking a certain task (i.e., task-positive),
such as finger-tapping (El Khoury et al., 2019) or verbal
memory (Vargas et al., 2017). For both the finger-tapping and
verbal memory tasks, the overall effect of photobiomodulation
was to suppress or reduce activity in the particular cortical
areas activated by these tasks (Vargas et al., 2017; El Khoury
et al., 2019). The effect of photobiomodulation on brain
activity has been shown to be due to a metabolic influence
through the activation of cytochrome oxidase c and an increase
of hemoglobin oxygenation (Saucedo et al., 2021), rather
than a thermal one (Dmochowski et al., 2020; Wang et al.,
2021).

In addition, photobiomodulation has been reported to
influence the global, large scale networks of the brain
(Ghaderi et al., 2021). These large scale networks involve the
coordination and intercommunication of a number of different
regions of the cortical areas involved in the processing and
integration of information that is necessary to generate a
number of higher-order cognitive functions, such as perception,
attention, memory and emotion. One of these networks,
the so-called default mode network, is relatively recently
described as cortical areas that show synchronous activity
when individuals are seemingly at rest, not engaged in any
specific mental task (Raichle, 2015). This network appears
most active when individuals have internal thoughts, such
as daydreaming, recalling memories, envisioning the future
and mind-wandering (Raichle, 2015). While these cortical
areas show elevated activity when an individual is at rest,
their activity lowers when the individual is engaged in a
particular task, such as focusing attention on something
in the external or internal (e.g., meditation) environments
(Raichle, 2015), or in a given cognitive task. Such “focusing”
by an individual, appears to deactivate the default mode
network, or parts thereof, so that the various task-related
networks can operate (Raichle, 2015). Indeed, it is thought
that individuals who cannot deactivate this network when
performing a task will perform the task more poorly (Anticevic
et al., 2012). A failure to deactivate the default mode network
has also been reported in a number of in neurological
disorders, including Alzheimer’s disease; in these cases, it has
been suggested that there is an impaired ability to switch
neural activities from “default” to “active and engaged” mode
(Hafkemeijer et al., 2014).

In relation to the effect of photobiomodulation, it appears
to influence the functional connectivity of large scale networks,
particularly the default mode network (Naeser et al., 2019).
In healthy subjects, transcranial photobiomodulation reduces
activation during a finger-tapping task as well as resting
connectivity strengths locally in parts of the default mode
network (El Khoury et al., 2019). In patients suffering from
either chronic stroke or Alzheimer’s disease, both of which
have abnormally functioning networks, photobiomodulation

could strengthen and influence functional connectivity
within the default mode network itself, together with its
connectivity with other networks, for example the salience
and central executive networks (Chao, 2019; Naeser et al.,
2019). In essence, in these damaged and/or diseased states,
photobiomodulation may help correct the imbalance of
functional connectivity, restoring the connectivity between
cortical areas to “normal” levels (Saltmarche et al., 2017;
Chao, 2019; Naeser et al., 2019; Zomorrodi et al., 2019; Spera
et al., 2021). These improvements in functional connectivity
manifest in improvements in cognition and memory in, for
example, Alzheimer’s disease patients (Lim, 2014; Berman
et al., 2017; Saltmarche et al., 2017; Chao, 2019; Baik et al.,
2021).

Finally, there are several previous studies showing that
transcranial photobiomodulation increases functional activity
in both young and in particular, older healthy adults, by
elevating cytochrome oxidase c oxidation, together with
hemoglobin oxygenation (Wang et al., 2017; Saucedo et al.,
2021).

Photobiomodulation induces
neuroprotection

Photobiomodulation has been shown, not only to influence
the functional activity of neurones across the brain, but also
to improve their survival against damage or disease. Such
improvements, referred to commonly as disease-modifying or
neuroprotective outcomes, have been reported in a range of
animal models of disease or trauma, including; retinal disease
(Eells et al., 2004; Natoli et al., 2010; Albarracin and Valter,
2012; Peoples et al., 2012a; Begum et al., 2013; Gkotsi et al.,
2014), traumatic brain (Ando et al., 2011; Oron et al., 2012;
Quirk et al., 2012; Xuan et al., 2013, 2014, 2015) and optic
nerve (Fitzgerald et al., 2010) injury, experimentally induced
stroke (Lapchak et al., 2004; DeTaboada et al., 2006; Oron
et al., 2006), familial amyotrophic lateral sclerosis (Moges
et al., 2009), multiple sclerosis (Muili et al., 2012, 2013),
aging (Begum et al., 2013; Kokkinopoulos et al., 2013; Gkotsi
et al., 2014; El Massri et al., 2018b), Parkinson’s disease
(Liang et al., 2008; Whelan et al., 2008; Ying et al., 2008;
Trimmer et al., 2009; Shaw et al., 2010, 2012; Peoples et al.,
2012b; Moro et al., 2013, 2014, 2016; Purushothuman et al.,
2013; Vos et al., 2013; Johnstone et al., 2014; Reinhart et al.,
2014, 2016a,b, 2017; Oueslati et al., 2015; Darlot et al., 2016;
El Massri et al., 2016a,b, 2017, 2018a; Kim et al., 2019;
O’Brien and Austin, 2019; San Miguel et al., 2019; Salehpour
and Hamblin, 2020) and Alzheimer’s disease (Michalikova
et al., 2008; Yang et al., 2010, 2021; DeTaboada et al., 2011;
Sommer et al., 2012; Grillo et al., 2013; Purushothuman et al.,
2014, 2015; Comerota et al., 2017, 2019; Blivet et al., 2018;
Wang et al., 2020).
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Mechanisms of photobiomodulation:
Direct and indirect stimulations

The precise mechanisms used by photobiomodulation
to achieve these beneficial outcomes – both functional and
neuroprotective – are not entirely clear, but two main ones have
been suggested, namely direct and indirect systemic stimulation
(Johnstone et al., 2016; Mitrofanis, 2019).

For direct stimulation, photobiomodulation has to fall
directly on the neurones (Figure 1). The light is absorbed by
photoacceptors found among mitochondria (e.g., cytochrome
oxidase c and/or interfacial nanowater) or elsewhere (e.g.,
transient potential receptor ion channels and/or various types
of opsins) within the neurones, that then generates more
energy that drive intrinsic neuronal functions (Hamblin, 2016;
Bathini et al., 2022; Hamblin and Liebert, 2022; Liebert et al.,
2022; Ramezani et al., 2022). In addition to these short-term
energy gains, photobiomodulation also induces more long-
term cellular changes, by activating the expression of various
functional and protective genes (Hamblin, 2016). In particular,
photobiomodulation prompts the expression of growth factors,
for example glial-derived neurotrophic factor (El Massri et al.,
2017) and brain-derived neurotrophic factor (Meng et al., 2013;
Xuan et al., 2013), both of which have been shown to increase the
survival of neurones. In essence, photobiomodulation makes the
neurones “healthier,” by not only making them function better,
but also making them more resistant to disease and distress
(Hamblin, 2016; Mitrofanis, 2019). It should be noted that this
direct type of stimulation has been shown to influence both the
functional activity of neurones, as well as offer neuroprotection
(Hamblin, 2016; Mitrofanis, 2019).

Photobiomodulation not only has a direct neuroprotective
effect on diseased or distressed neurones, but it also has an
impact on the hypertrophy and proliferation of the resident
glial cells and inflammation. Previous studies have shown
that photobiomodulation reduces gliosis and/or inflammation
in animal models of Alzheimer’s (DeTaboada et al., 2011;
Blivet et al., 2018) and Parkinson’s disease (El Massri et al.,
2016a,b; O’Brien and Austin, 2019), multiple sclerosis (Muili
et al., 2012, 2013), aging (Begum et al., 2013; Kokkinopoulos
et al., 2013; Gkotsi et al., 2014; El Massri et al., 2018b) and
traumatic brain injury (Khuman et al., 2012). It is not clear
if the photobiomodulation-induced reduction in gliosis and/or
inflammation is due to a direct action on the glial cells or
secondary to the survival of the neurones, although there are
reports of a direct photobiomodulation stimulation of primary
astrocytes in culture (Yang et al., 2010; Yoon et al., 2021).
It should be noted that photobiomodulation has also been
shown to have a direct effect on the vascular system. There
is evidence that photobiomodulation offsets the degeneration
and leakage of retinal capillaries in animal models of diabetes
(Cheng et al., 2018) and in the striatum and brainstem of a
mouse model of Parkinson’s disease (San Miguel et al., 2019).

Further, photobiomodulation has been reported to induce the
release of nitric oxide from cells, which triggers the vasodilation
of nearby blood vessels, increasing blood (and lymphatic) flow
(Hamblin, 2016).

In addition to direct stimulation, photobiomodulation has
been shown – quite remarkably – to be beneficial to neuronal
survival even when it is applied to a distant or remote location;
that is, when it is not applied directly to the neurones (Figure 2).
The evidence for this indirect stimulation has been accumulated
from many previous studies in a range of animal models
of disease – from diabetes to Alzheimer’s and Parkinson’s
disease – showing that photobiomodulation applied to one
body part can induce neuroprotective effects in another, more
distant body part (Braverman et al., 1989; Tuby et al., 2011;
Stone et al., 2013; Johnstone et al., 2014, 2016; Liebert et al.,
2014; Farfara et al., 2015; Saliba et al., 2015; Oron and Oron,
2016; Mitrofanis, 2017; Blivet et al., 2018; Kim et al., 2019).
For this effect, photobiomodulation is thought to activate
circulating immune (Byrnes et al., 2005; Chung et al., 2012;
Muili et al., 2012, 2013; Saliba et al., 2015) and/or stem (Tuby
et al., 2011; Arany et al., 2014; Farfara et al., 2015; Khan
and Arany, 2015; Oron and Oron, 2016) cells, or even free-
floating mitochondria (Al Amir Dache et al., 2020), within
the cardiovascular or lymphatic systems that then leads to
an increase in overall mitochondrial activity – in a similar
fashion to the direct stimulation described above – in the
distressed neurones located in the brain. The precise mechanism
used by the circulatory cells and/or molecules to achieve these
beneficial outcomes in neurones are far from clear, however
(Johnstone et al., 2016; Mitrofanis, 2019). Although this type
of indirect photobiomodulation stimulation has been shown to
be neuroprotective, it is not known if it can induce a functional
change in the activity of neurones within the brain, as does the
direct stimulation (see above).

In summary, both the direct and indirect types of
photobiomodulation stimulation have been reported to be
neuroprotective – when applied in the state of wakefulness – in
a range of animal models of disease. When comparing the two,
at least in an animal model of Parkinson’s disease (Johnstone
et al., 2014) – the direct stimulation is more effective than the
indirect, resulting in a larger magnitude of neuroprotection. It
has been suggested that the direct stimulation forms the primary
mechanism of photobiomodulation-induced neuroprotection,
while the indirect stimulation forms an added, back-up one
(Johnstone et al., 2016; Mitrofanis, 2019).

Photobiomodulation and sleep

Photobiomodulation in the state of wakefulness has been
much studied, whereas the impact of photobiomodulation on
brain function during the state of sleep has received little
attention. In the section that follows, we will discuss what is
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FIGURE 1

Schematic diagram showing the direct stimulation mechanism of photobiomodulation. When photobiomodulation hits the cells directly, it is
absorbed by a photoacceptor, most notably cytochrome oxidase c or interfacial nanowater within the mitochondria. This results in the
production of more ATP (adenosine triphosphate) energy and to the activation of transcription factors in the nucleus and expression of
protective and stimulatory genes within the cells. The net result is a healthier cell.

known of the effect of photobiomodulation on the sleeping
brain, followed by the potential mechanisms involved. First,
we will consider the primary function associated with sleep
and the recently discovered system that is involved in carrying
out this function.

Glymphatic system: The house-keeper
of the sleeping brain

Although the precise function of sleep is not clear, it has
been suggested recently to be the critical period of the 24 h cycle
when the brain replenishes its resident fluid and clears all of
its cellular debris and waste-products before they become toxic;
that sleep is when the brain assumes a house-keeping function,
a function that it cannot undertake readily during wakefulness,
when it is fully occupied with orchestrating all the complex
neural networks associated with the executive functions, namely
cognition, attention, memory and skilled movements (Iliff et al.,
2012; Rasch and Born, 2013; Aspelund et al., 2015; Eugene
and Masiak, 2015; Jessen et al., 2015; Louveau et al., 2015,
2017; Brodziak et al., 2018; Plog and Nedergaard, 2018; Hablitz
et al., 2020; Mestre et al., 2020; Nedergaard and Goldman, 2020;
Reddy and van der Werf, 2020; Yan et al., 2021). Recent studies
have reported that both children and adults are able to retain

memories better after they slept well. Two naps per day during
infancy results in better memory of tasks (Mason et al., 2021)
and being kept awake results in a tendency to forget reward
memory representations (Prehn-Kristensen et al., 2018).

The brain undertakes its house-keeping duties in a rather
unique way. Unlike all other organs, the brain does not have
distinct lymphatic vessels and nodes to clear fluid and waste-
products into the venous system. Rather, the brain relies on a
series of perivascular spaces and astrocytic glial cells to clear
its fluid and waste (Figures 3A–C). Cerebrospinal fluid flows
into perivascular spaces around the arteries and then into the
interstitial space within the brain via water channels (aquaporin-
4) in astrocytic end-feet. This process then drives the drainage
of excess fluid and waste within the interstitial space out and
into perivascular spaces around the veins, disposing ultimately
through lymphatic vessels through the meninges and then down
into the venous system (Iliff et al., 2012; Rasch and Born, 2013;
Aspelund et al., 2015; Eugene and Masiak, 2015; Jessen et al.,
2015; Louveau et al., 2015, 2017; Brodziak et al., 2018; Plog
and Nedergaard, 2018; Hablitz et al., 2020; Mestre et al., 2020;
Nedergaard and Goldman, 2020; Reddy and van der Werf, 2020;
Yan et al., 2021).

The activity of the glymphatic system is much greater in the
state of sleep (Figure 3C) than in wakefulness (Figure 3B). Its
activity has been shown to be correlated tightly with changes
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FIGURE 2

Schematic diagram showing the indirect stimulation mechanism of photobiomodulation. When photobiomodulation is applied to an
organ/structure (e.g., thigh or abdomen) distant from the damage zone (e.g., brain), it may activate circulatory cells, for example stem or
immune cells or even the free-floating mitochondria in the plasma, that swarm to the site of damage and improve cell function and/or survival.
The net result is a healthier cell. Although this method can be effective in neuroprotection in a range of animal models of disease, it is not quite
as effective as the direct photobiomodulation stimulation.

in brain wave-forms in the different arousal states; it increases
with the onset and predominance of δ and θ waves, characteristic
of slow-wave, non-rapid eye movement sleep and reduces with
the onset and predominance of α and β waves, characteristic of
wakefulness (and rapid-eye movement sleep) (Iliff et al., 2012;
Rasch and Born, 2013; Aspelund et al., 2015; Eugene and Masiak,
2015; Jessen et al., 2015; Louveau et al., 2015, 2017; Brodziak
et al., 2018; Plog and Nedergaard, 2018; Hablitz et al., 2020;
Mestre et al., 2020; Nedergaard and Goldman, 2020; Reddy and
van der Werf, 2020; Yan et al., 2021).

If individuals are deprived of quality sleep, and the
brain does not clear its waste effectively, then many negative
consequences may develop; for example, individuals become
less attentive, have slower cognitive function and memory

recall, and/or have problems with motor functions. Executive
function and emotional regulation are diminished. And it
does not improve the older we get; those over 60 years tend
to have shorter and lighter sleep patterns, interrupted often
by multiple awakenings. Consistent with these observations,
there are many reports of an age-related decline in glymphatic
activity, both in cerebrospinal fluid flow and clearance. When
periods of poor quality sleep become chronic, there is an
increased risk of developing a serious neurological condition,
including depression or Alzheimer’s disease. In Alzheimer’s
disease for example, there are many reports that the activity of
the glymphatic system is very much reduced (Figures 4A,B). In
mouse models of the disease, there is reduced glymphatic influx,
resulting in less clearance of the β-amyloid (Iliff et al., 2012;
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FIGURE 3

Schematic diagram of the brain (A) highlighting the glymphatic system – the house-keeper of the brain – in wakefulness [left side of brain
schematic in panel (A); and inset (B)] and in sleep [right side of brain schematic in panel (A); and inset (C)]. Glymphatic activity is greater during
sleep [represented by thicker astrocyte processes and thicker arrows of cerebrospinal fluid (CsF) flow in panel (C)] than in wakefulness (B). Its
activity is correlated with changes in brain wave-forms in the different arousal states; it increases with the onset and predominance of δ and θ

waves, characteristic of slow-wave [right side of panel (A)] and reduces with onset and predominance of α and β waves, characteristic of
wakefulness [left side of panel (A)]. The glymphatic system works with CsF flowing into perivascular spaces around the arteries and then into the
interstitial space (IsS) within the brain via aquaporin-4 (AQP4) in astrocytic end-feet. AQP4 is more active during sleep (C) than in wakefulness
(B). This process drives the drainage of excess fluid and waste into perivascular spaces around the veins.

Rasch and Born, 2013; Aspelund et al., 2015; Eugene and Masiak,
2015; Jessen et al., 2015; Louveau et al., 2015, 2017; Brodziak
et al., 2018; Plog and Nedergaard, 2018; Hablitz et al., 2020;
Mestre et al., 2020; Nedergaard and Goldman, 2020; Reddy
and van der Werf, 2020; Yan et al., 2021) and tau proteins
(Harrison et al., 2020).

Photobiomodulation influence on the
sleeping brain and the house-keeper

No previous study has examined the effect of
photobiomodulation on brain wave-forms during sleep;
for example, whether it influences the activity of the δ and θ

waves during slow-wave sleep, as it does these waves and the α, β
and γ waves during wakefulness (Vargas et al., 2017; Wang et al.,
2017; Jahan et al., 2019; Zomorrodi et al., 2019). There have,
however, been recent indications that photobiomodulation
does in fact impact the clearance of fluid and toxic waste
more effectively during sleep than during wakefulness (e.g.,
Semyachkina-Glushkovskaya et al., 2021b).

Transcranial photobiomodulation has been shown to
improve the clearance of experimentally introduced substances
(e.g., gold nanorods and dextran) into the cerebrospinal
fluid (Semyachkina-Glushkovskaya et al., 2020). In addition,
photobiomodulation reduces β-amyloid accumulation and the

cognitive loss of Alzheimer’s-induced mice more effectively
during sleep, than during wakefulness (Semyachkina-
Glushkovskaya et al., 2021b). It also stimulates the overall
flow of cerebrospinal fluid through the brain, as well as
prompting the break-up of β-amyloid aggregations (Figure 4C;
Yue et al., 2019). When applied to normal mice at night,
photobiomodulation promotes a faster clearance of β-amyloid
from the ventricular system of the brain, than when it is applied
during the day (Semyachkina-Glushkovskaya et al., 2021b).
Finally, photobiomodulation has been shown to stimulate the
clearance of fluid from the meningeal lymphatic vessels; these
vessels are considered crucial in the final clearance of β-amyloid
from the brain (Zinchenko et al., 2019).

Photobiomodulation-induced
mechanisms during sleep

The precise mechanisms used by photobiomodulation to
stimulate the activity of the glymphatic system, that is to
improve the fluid clearance and disposal of waste-products
from the brain, are far from clear (Salehpour et al., 2022).
Previous authors have shown that photobiomodulation prompts
the breakdown of various protein aggregations within the brain
and stimulates a nitric oxide-induced vasodilation – at least
outside the brain, within the lymphatic vessels of the meninges –
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FIGURE 4

Schematic diagram of the brain highlighting the glymphatic system - the house-keeper of the brain – in normal, healthy tissue during sleep (A),
in disease [(B); e.g., Alzheimer’s disease] and in disease after photobiomodulation treatment (C). Glymphatic activity is reduced greatly in disease
[represented by thinner astrocyte processes, thinner/curved arrows of cerebrospinal (CsF) flow through interstitial space (IsS), accumulated
waste-product and lighter-colored (damaged) aquaporin protein in (B) compared to normal (A)]. After photobiomodulation treatment,
glymphatic activity is restored [represented by thicker astrocyte processes, thicker arrows of CsF flow through IsS, cleared waste-product and
darker-colored (re-activated) aquaporin protein in (C) as well as neuronal health].

and these are likely to contribute to the improved fluid and
waste clearance from the brain (Yue et al., 2019; Semyachkina-
Glushkovskaya et al., 2020, 2021a,b,c). Many other mechanisms,
as yet unknown, are, however, likely to be at play also, particular
within the glymphatic system.

A speculation: There is an
arousal-dependent effect of
photobiomodulation

Taking all these findings together, we suggest that
photobiomodulation has different cellular effects, depending
on the state of arousal when it is applied, that it may follow a
circadian rhythm. During wakefulness, photobiomodulation
could have a dual primary effect of first, stimulating neuronal
function, activating mitochondrial activity and gene expression,
and influencing the different wave-forms patterns across the
brain (e.g., α, β, γ waves), and second, improving neuronal
survival, providing effective neuroprotection against distress
and disease. During sleep, however, photobiomodulation
may be less effective in stimulating neuronal function and
survival, but be more effective in stimulating the clearance

of fluid and waste from the brain; it may do so by increasing
the activity of the glymphatic system. The mechanism that
underpins this glymphatic stimulation is not known, but
we suggest that photobiomodulation may work primarily to
increase the permeability of the aquaporin-4 water channels
on the astrocytes, thereby helping to increase the flow
of fluid through the brain (Figure 4C). This suggestion
requires experimental validation by future studies, however.
Semyachkina-Glushkovskaya and colleagues suggest that
the fluid clearance of the brain is promoted further by
photobiomodulation-induced vasodilation of the meningeal
lymphatic vessels, and this mechanism may help the process
also (Semyachkina-Glushkovskaya et al., 2020, 2021a,b,c).
Further, photobiomodulation may also effect the composition
of cerebrospinal fluid, by changing the structure of the water
molecules, making the cerebrospinal fluid more free flowing
(Salehpour et al., 2022). In addition, the flow of the cerebrospinal
fluid may be influence by the cilia lining the ventral parts of
the third ventricle which are considered to be under circadian
control (Eichele et al., 2020); photobiomodulation may have a
considerable influence this system as well.

Our suggestion of an arousal-dependent effect of
photobiomodulation is not inconsistent with recent
findings that photobiomodulation influences cell function
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FIGURE 5

Schematic diagram showing the suspected patterns of
biophoton emissions – the endogenous light from cells – in
neurones (A) and the glymphatic system (B) in both health (A’,B’)
and disease (A",B"). In health, the biophoton light emitted by
neurones and glymphatics may be different in terms of
wavelength and intensity to that emitted in disease (represented
by different-colored and fewer biophoton shapes).

differently depending on the time of day when it is applied,
that photobiomodulation-induced cellular effects follow
circadian rhythms. In a drosophila model, photobiomodulation
has been reported to increase mitochondrial function and
ATP (adenosine triphosphate) levels more effectively in the
mornings, compared to the afternoons or at night (Weinrich
et al., 2019; Shinhmar et al., 2022). There are also indications of
a similar pattern in humans, that photobiomodulation improves
visual function more effectively when applied in the mornings
compared to later in the day, in the afternoons (Shinhmar
et al., 2020). Hence, it appears that as the day proceeds
from morning to night, the effect of photobiomodulation on
mitochondrial function becomes less; as suggested above, the
photobiomodulation impact on other cellular structures, such
as the water channels on astrocytes may become stronger during
the shift from day to night.

The speculation outlined above, that there is an arousal-
dependent effect of photobiomodulation on different cell types
and systems in the brain relates to a direct stimulation
(Figure 1). But what about indirect systemic stimulation
(Figure 2)? Does photobiomodulation have a different effect
on circulatory cells and/or molecules in the different states
of arousal, that it could also follow a circadian rhythm? It
may be the case for example, that photobiomodulation has
less of an effect on the recently discovered free-floating plasma
mitochondria during sleep than during wakefulness. Further, for

the immune system, photobiomodulation during wakefulness
may promote the prevalence of anti-inflammatory cytokines
(Muili et al., 2012, 2013), while during sleep, it may enhance
defense mechanisms against infection and inflammation, with
the production of pro-inflammatory cytokines (Besedovsky
et al., 2012; Garbarino et al., 2021; Mapunda et al., 2022). These
key issues for indirect photobiomodulation stimulation during
different arousal states remain to be determined.

A speculation: “Biophotons”
contribute to the mechanism of
photobiomodulation and the
arousal-dependent effect

A question that is asked commonly by scientists and by
those across the wider community is “why do neurones located
so deep within brain – those that are not normally exposed
to light and function in total darkness – have light-sensitive
receptors?” It stands to reason that cells of the skin for example,
have light-sensitive receptors as to facilitate the production of
vitamin D, but why should cells located very deep in the brain
have receptors to light?

One could always use the evolutionary argument that,
all cells – even those found deep within the brain – have
maintained light-sensitive receptors as a remnant from a simpler
invertebrate ancestor, when all cells were exposed directly to
light and they were in a position to convert light energy into
metabolic energy. If so, this would explain why modern day
photobiomodulation is so effective (e.g., Mitrofanis, 2017). But
is there more to the story? We suggest that there is. That
neurones, in fact all body cells, have light-receptors because
they themselves use light to communicate with each other;
they also use light to repair themselves, as well as others,
during periods of distress and/or damage. In essence, we suggest
that photobiomodulation is effective on neuronal function and
survival because neurones use the very same wavelengths to
communicate and for repair (Liebert et al., 2014; Moro et al.,
2021). In the section that follows, we will consider what is
known of how neurones may generate light and then highlight
the idea that photobiomodulation uses this light system to
impart beneficial outcomes; we speculate further that the
change in photobiomodulation effects depending on the state
of arousal is reflective of a change in biophoton activity from
wakefulness to sleep.

Biophotons: The light made by cells

The idea that all living cells can generate light and may
use this to communicate with each other is not new, having
been first proposed about a century ago. Since that time,
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FIGURE 6

Schematic diagram showing the suspected patterns of biophoton emissions – the endogenous light from cells – in neurones and the
glymphatic system during wakefulness (A,C) and sleep (B,D) and in normal tissue (A,B) and after photobiomodulation treatment. During
wakefulness in normal tissue (A), the activity of neurones is high (represented by thick processes and many biophoton shapes), while glymphatic
activity is low (represented by thin processes and few biophoton shapes). During sleep in normal tissue (B), the activity of neurones is low
(represented by thin processes and few biophoton shapes), while glymphatic activity is high (represented by thick processes and many
biophoton shapes). After photobiomodulation treatment, activity is increased further in neurones during wakefulness [(C); represented by thick
processes and many darker biophoton shapes] and in the glymphatics during sleep [(D); represented by thick processes and many darker
biophoton shapes]. Photobiomodulation may have less of an effect on neurones during sleep [(D); represented by thin processes and few
biophoton shapes] and on the glymphatics during wakefulness [(C); represented by thin processes and few biophoton shapes].

the evidence for this form of communication has developed
further and has been referred to as biophotons. This self-
generated light is thought to arise from the many intrinsic
metabolic processes that occur within the cell, principally
from the mitochondria, and be absorbed by a number of
chromophores (e.g., cytochrome oxidase c) either within the
same or neighboring (i.e., bystander) cells, leading ultimately to
a change in electrical activity (Grass et al., 2004; Tang and Dai,
2014; Salari et al., 2015; Mothersill et al., 2019; Van Wijk et al.,
2020; Moro et al., 2021; Zangari et al., 2021).

Biophotons are not bright, hence their often used alternative
term, ultra-weak light emissions. They cannot be seen by the
naked eye, nor even a fluorescence microscope, but only with
an ultra-sensitive light detection device or with a very specific
histological stain. The biophoton emissions have a rather broad
range of wavelengths, from ultraviolet to red and near infrared
range (i.e., λ = 200–950 nm), the latter being within the
range of photobiomodulation (Dotta et al., 2014; Tang and Dai,
2014; Zangari et al., 2021). It is not clear whether biophoton
emissions from the mitochondria initially formed by accident,
as a byproduct of metabolic activity, or by design, serving a
specific purpose. Either way, all neurones may have evolved the
biophoton network to communicate and for repair (Grass et al.,
2004; Tang and Dai, 2014; Salari et al., 2015; Mothersill et al.,
2019; Van Wijk et al., 2020; Moro et al., 2021; Zangari et al.,
2021). A most striking feature of biophotons emissions from
cells is that they can vary – in terms of intensity and wavelength
- depending on the state of homeostasis, whether the cell is

healthy or diseased (Figure 5; Tang and Dai, 2014; Salari et al.,
2015).

Does photobiomodulation engage the
biophoton network of communication
and repair?

We have speculated previously that many of the
beneficial effects on cell function and survival provided
by photobiomodulation may in fact depend on the biophoton
network (Liebert et al., 2014; Moro et al., 2021). It is striking that
the range of the wavelengths used by biophotons (∼λ = 200–
950nm) overlaps with the range of wavelengths effective in
photobiomodulation (∼λ = 600–1000), albeit at much lower
intensities, and that the same organelles (i.e., mitochondria)
and chromophores (e.g., cytochrome oxidase c) have been
implicated in both. The idea also offers an explanation as
to why neurones located so deep within the near total-
darkness of the brain, have receptors to light and benefit
from photobiomodulation. That is because they themselves
use light to communicate and maintain homeostasis and
photobiomodulation engages this network system to produce
beneficial outcomes (Liebert et al., 2014; Moro et al., 2021).

This speculation, that photobiomodulation works through
the biophoton network to achieve beneficial effects, is
based on a direct stimulation (Figure 1). The benefits of
photobiomodulation using the indirect systemic stimulation
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(Figure 2) may rely on the biophoton network also. The
free-floating mitochondria within the blood plasma are of
particular interest here. They too could use biophotons
to communicate and repair, as they would as intracellular
organelles, so there is every possibility that they may be
activated by photobiomodulation – particularly during the state
of wakefulness – and swarm to the site of distress, helping
neurones survive with their biophoton emissions. It remains to
be determined experimentally by future studies if the biophoton
network is in fact engaged by photobiomodulation, either
by direct or indirect means, and whether this is indeed the
major mechanism that underpins the beneficial outcomes of
photobiomodulation.

Photobiomodulation and the
arousal-dependent effect: Reflective of
a change in biophoton activity?

If this speculation is correct, that photobiomodulation
engages the biophoton network to achieve beneficial outcomes
in neuronal function and survival, then the arousal-dependent
changes in the effect of photobiomodulation may reflect changes
in biophoton activity in the different states. We speculate
further that the most functionally active cells or systems
during either wakefulness or sleep would be the most active
and receptive in biophoton transmissions, thereby being the
most responsive to photobiomodulation (Figure 6). During
wakefulness, glymphatic activity is low, while many neurones
across the brain have high metabolic activity and presumably
high biophoton activity, both in emission and reception; as
a consequence, photobiomodulation would be most effective
on these cells during this state. During sleep, however, many
neurones are at rest, while the glymphatic system becomes
active, in particular the astrocytes and their aquaporin-4 water
channels, and presumably has high biophoton activity; hence,
photobiomodulation would be most effective on this system
during this state of arousal (Figure 6).

Conclusion

In most studies reporting on the cellular and clinical
effects of photobiomodulation, the treatment has been applied
during the state of wakefulness. These studies have shown
that photobiomodulation improves neuronal function and
survival in the brain after stimulating mitochondrial activity
in neurones, as well as activating a range of stimulatory
and protective pathways; they also show improvements in
clinical signs and/or symptoms in a range of disorders, from
Alzheimer’s to Parkinson’s disease, and from depression to
traumatic brain injury. Many fewer studies have examined the
effect of photobiomodulation delivered during sleep. These

few studies have nevertheless shown a somewhat different
effect on brain function. In this state, photobiomodulation
appears to be more effective in improving the flow of
cerebrospinal fluid and clearance of waste from the brain.
We speculate that the overall effects of photobiomodulation
on the brain are arousal-dependent, shifting from different
cells and systems as wakefulness becomes sleep, that it may
follow a circadian rhythm. We speculate further that the
different arousal-dependent effects of photobiomodulation are
mediated principally through the biophoton – ultra-weak light
emission – network of communication and repair across
the brain. If our speculations are correct, then this shift in
beneficial effects induced by photobiomodulation – dependent
on the state of arousal – have considerable experimental and
therapeutic implications. Our speculations on the effects of
photobiomodulation on the glymphatic system, in particular
its impact on the activity of aquaporin-4 water channels, as
well as the biophoton network await experimental validation
by future studies.
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