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A large body of literature deals with biological effects of extremely low-frequency magnetic
fields (ELF MFs) studied in vitro. Despite the multitude of studies, no coherent picture has
evolved regarding the plausibility of effects at low-flux densities or regarding the interaction
mechanisms. Here, we propose that ELF MF exposure in vitro causes changes in oxida-
tive status as an early response. We tested this hypothesis by scrutinizing the literature
and applying a grouping approach for analyzing relevant biological properties and exposure
conditions. A total of 41 scientific original publications were analyzed for this purpose.
The conclusion from the work is that ELF MF (modulated or unmodulated) consistently
can influence the oxidative status, at or above 1 mT, in a broad range of cell types and
independent of exposure duration. A response at lower flux densities is seen in certain
studies, although not consistently. Further studies with stringent protocols for sham expo-
sure, blinding, and statistical analysis as well as appropriate positive controls are needed
to establish if true dose-relationships for effects on oxidative status exist.

Keywords: mammalian cells, immune-relevant cells, flux density, exposure duration, ROS

INTRODUCTION
Extremely low-frequency magnetic fields (ELF MFs; 1–300 Hz)
are widely present in the modern society. Such MFs originate pri-
marily from distribution and usage of electricity and are typically
found at higher magnetic flux densities in the vicinity of power
lines and devices using strong electric currents. For decades, epi-
demiological as well as experimental studies have addressed possi-
ble health effects of exposure to these and also to higher frequency
(electro)MF. Regarding chronic health effects, the International
Agency for Research on Cancer (1) has classified low-frequency
MF as a “possible carcinogen” (IARC class 2B). This classifica-
tion is based on indirect evidence, i.e., epidemiological findings of
increased risk for childhood leukemia in domestic settings where
the MF-level is higher than the commonly found levels (daily
averages exceeding 0.3–0.4 µT) (2, 3). However, there is no sup-
porting evidence for this classification from animal experiments.
Furthermore, there are no mechanistic data that can provide an
explanation for any effect on biological structures at the flux
density levels that have been identified in the epidemiological
studies.

It has been established that acute effects on excitable tissues
(nerve and muscle) can occur at magnetic flux densities that are
much higher than the ones associated with an increased risk for
childhood leukemia (at millitesla levels compared to tenths of
microtesla). Current exposure guidelines, such as those published
by the international commission on non-ionizing protection
[e.g., Ref. (4)], are set to protect against such established effects.
Although the epidemiological findings of the association between
MF exposure and childhood leukemia are indicating that chronic
average exposures above 0.3–0.4 µT are having an effect on disease

development, there is no evidence for any causal relationships, and
no other long-term effects have been established.

The scientific literature contains many experimental studies
reporting various biological effects of exposure to ELF MF [see,
e.g., comprehensive overviews in the opinions of SCENIHR (5,
6)]. The relevance for any disease outcome from these studies is
unclear. Although these studies have been performed for decades,
they have not provided with any convincing evidence for mecha-
nistic explanations of any biological effect at low-flux density levels
(at or below ICNIRP reference levels) and have not provided with
consistent findings that are supporting epidemiological data.

The reported effects from in vitro studies include virtually all
sorts of end points. This includes effects on DNA structure, gene
expression, cell growth and survival, cellular metabolism, motility,
protein functions, etc. It has to be noted, however, that despite the
considerable number of studies with observed effects, studies not
finding any effects are also very common. There is thus consider-
able inconsistency in the published literature. Unlike the situation
in, e.g., chemical toxicology, in the case of observed effects, many
studies have not addressed the issue of dose–response relation-
ships. There is also a clear lack of systematic approaches to other
important characteristics such as exposure duration.

Here, we focus on the status of oxidative responses, including
free radical release, after MF exposure as an example of a biologi-
cally relevant endpoint. Free radicals, or as the term we use in the
present paper, reactive oxygen species (ROS), are atoms or mole-
cules that contain one or more unpaired electrons, which makes
free radicals highly reactive, striving to form pairs to counteract
the labile unpaired condition. Free radicals gain electrons from any
available donor or donate an electron to a suitable acceptor, which
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Mattsson and Simkó Grouping approach to ELF MF bioeffects

in turn becomes modified into a secondary free radical. This chain
reaction can cause biological damage leading to macromolecule
damage such as DNA modifications or protein oxidation.

During aerobic conditions, free radicals are produced during
and through normal metabolic processes. Key sources include elec-
tron transfer in the plasma membrane and cell respiration in the
mitochondrial membrane. The production can proceed enzymat-
ically or non-enzymatically. Shigenaga et al. (7) suggested that the
mitochondria are the main source of the oxidative damage because
free radicals such as superoxide can escape from the electron trans-
port chain. About 3–10% of the oxygen turned over there is not
fully processed, i.e., reduced. ROS from the mitochondria can enter
the cytosol and react with other substances and thereby form new
radicals. This triggers a chain reaction in which electrons change
their owners, which can lead to DNA modification or enzyme
disruption.

In order to counteract intracellular damage by free radicals,
cells have antioxidant systems. These transform free electrons into
a non-reactive form by proteins or enzymes. Antioxidants regu-
late oxidative reactions by inhibiting, delaying, or hampering the
oxidation of the molecules (8). The intracellular enzymes that
function as antioxidants are the backbone of this cellular defense
system (9, 10). The key antioxidant enzymes are catalase (CAT),
superoxide dismutase (SOD), and various peroxidases. In addi-
tion, non-enzymatic antioxidants can also neutralize radicals (e.g.,
vitamin C, E or A/β-carotene, glutathione, and melatonin) (8).

Free radicals have a series of important functions, such as
serving in the immune defense. Leukocytes and macrophages
execute their bactericidal effects by the release of ROS as a cel-
lular defense mechanism against entering pathogens, thus, killing
bacteria, viruses, and degenerated cells. At low concentrations,
ROS can act as second messengers and activate signaling cas-
cades, which in turn can lead to physiological responses such as
gene expression, cell proliferation, and apoptosis [for reviews see
Ref. (11, 12)]. However, immune-relevant cells use the reactive
potential of ROS also to fulfill important physiological func-
tions such as regulating the vascular tone and those cell func-
tions controlled by oxygen concentration. Oxidative stress is the
result of an imbalance between the intracellular ROS produc-
tion and the cellular defense mechanisms. The balance between
oxidants and antioxidants, the redox homeostasis, can be dis-
rupted by an increase in free radicals or a reduction of anti-
oxidative substances. Depending on the duration and strength
of the imbalance, the redox regulation of the cell fulfills a com-
pensatory function. When a constant production of free radicals
is triggered by oxidative stress, the redox homeostasis becomes
unbalanced and the cellular mechanisms are no longer capa-
ble of establishing the normal levels. This can not only persis-
tently change signal transduction but also lead to changes on
gene and protein levels and thus further promote oxidative con-
ditions or processes. This includes virtually all complex mole-
cules that can gain a single electron (DNA, proteins, lipids, and
carbohydrates).

Despite that numerous investigations have shown the presence
of a multitude of biological effects of ELF MF exposure, the first
point of interaction between MF and cells, and the underlying mol-
ecular mechanisms, are still not clear. However, the release of ROS

or other oxidative processes are often connected to the investigated
effects. Therefore, we assume that oxidative processes triggered by
MF play a key role within the effectiveness of MF (13, 14). Here,
we focus on in vitro studies investigating the oxidative processes
after exposure to low-frequency MF. Our hypothesis is that MF
exposure consistently can trigger oxidative responses in cultured
mammalian cells. Moreover, we apply a grouping approach to ana-
lyze relevant biological or exposure conditions for MF triggered
oxidative processes.

We have asked a set of questions regarding (exposure) condi-
tions and biological responses:

- Are responses related to the cell type used in the study?
- Are effects related to the magnetic flux density?
- Are the effects related to modulation of the MF signal?
- Are the responses related to exposure duration?

In addition, we have also evaluated certain quality criteria in
the studies, such as whether or not true sham exposure conditions
have been employed; if blinded protocols have been used; and if
the appropriate positive controls have been included in the studies.
Finally, we investigate the “effect size” of the response in the form
of ROS production.

APPROACH AND OUTCOMES
We have identified (PubMed1 and EMF-Portal2) 41 published
papers in the English language dealing with oxidative processes
after ELF MF exposure of mammalian cells in vitro. Many of
these studies have already been extensively reviewed (5, 6, 13–
15). Therefore, our goal is to evaluate these studies by identifying
and using a “grouping” tool to classify relevant conditions, such
as cell type, and/or exposure conditions, for cellular response after
MF exposure and not to perform a comprehensive review. We are
aware of the limited number of relevant studies and also about the
inadequate quality of some of the investigations. Consequently,
some additional studies have not been included in this article
since those studies have not matched our inclusion criteria, which
include the possibility to follow the exposure and experimental
approach. We were especially excluding studies where exposure or
other experimental conditions were inappropriate and/or unsat-
isfactory described. The level of criteria is admittedly low, but was
accepted on practical grounds, otherwise only few publications
would have been taken into account.

First of all, we have considered “positive” and “negative” find-
ings among the publications. A “positive” study refers to a study
where an effect of MF is shown, with valid methods described in
enough detail to constitute evidence supporting the study hypoth-
esis. If a well-conducted and appropriately reported study shows
no clear effect despite proper methods and statistical power, its
results provide evidence against the study hypothesis (but sup-
port the null hypothesis), and the study is considered “negative”
(Table 1).

Here, we consider oxidative response as the first “grouping”
of biological endpoints. All positive findings (independent of

1www.ncbi.nlm.nih.gov
2www.emf-portal.de
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Mattsson and Simkó Grouping approach to ELF MF bioeffects

Table 1 | Summary of identified relevant studies.

Cells Exposure

conditions

Oxidative

responsea

Reference

Human peripheral blood

mononuclear cells

Mononuclear cells Primary Immune relevant 20–5000 Hz

5 µT

30 min

No (16)

Human peripheral blood

mononuclear cells

Mononuclear cells Primary Immune relevant 50 or 60 Hz

2, 20, 100, 500 µT

6 h

No (17)

MCF10A human breast

epithelial cells

Breast epithelial cells Cell line Other cell line 60 Hz

1 mT

4 h

No (18)

Murine L929 fibroblasts Fibroblasts Cell line Other cell line 50 Hz

100 or 300 µT

1 or 24 h

No (19)

Rat-cortical neurons Neurons Primary Other primary cells 50 Hz

0.1 and 1.0 mT

7 days

No (20)

Rabbit red blood cells Red blood cells Primary Other primary cells 50 Hz

0.2, 0.5 mT

45, 90 min

No (21)

THP-1 cells (human

monocytic leukemia cell

line)

Leukemia Cell line Immune relevant 50 Hz

1 mT

4 h

Yes (22)

K562 cells Myelogenous leukemia Cell line Immune relevant 50 Hz

1 mT

3 h

Yes (23)

K562 cells Myelogenous leukemia Cell line Immune relevant 50 Hz

5 mT

1 h

Yes (24)

Murine osteoblasts (7F2)

co-cultured with RAW

264.7 macrophages

Osteoblasts, macrophages Cell line Immune relevant 75 Hz, PEMF

1.5 mT

9 h

Yes (25)

Human mono Mac 6 cells Monocytic leukemia Cell line Immune relevant 50 Hz Yes (26)

Human umbilical cord

blood-derived monocytes

Monocytes Primary 1 mT

45 min

K562 cells Myelogenous leukemia Cell line Immune relevant 50 Hz

0.025–0.10 mT

1 h

Yes (27)

THP-1 Monocytic cells Cell line Immune relevant 50 Hz

1 mT

6, 24 h

Yes (28)

Primary mouse

macrophages

Macrophages Primary Immune relevant 50 Hz

0.05–1.0 mT

45 min–48 h

Yes (29)

Mouse macrophages from

isolated bone marrow

precursor cells

Macrophages Primary Immune relevant 50 Hz

1 mT

5 min–24 h

Yes (30)

(Continued)
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Mattsson and Simkó Grouping approach to ELF MF bioeffects

Table 1 | Continued

Cells Exposure

conditions

Oxidative

responsea

Reference

Human blood platelets

from voluntary donors

Platelets Primary Immune relevant 50 Hz

10 mT

15 min

Yes (31)

Human peripheral blood

mononuclear cell

Mononuclear cells Primary Immune relevant 50 Hz

1, 3, 10, 30 mT

3 days

Yes (32)

Human peripheral blood

mononuclear cell from

Cohn’s disease patients

Mononuclear cells Primary Immune relevant PEMF 50 Hz

45 mT

3 h/day × 3 h/day

Yes (33)

Human umbilical cord

blood-derived monocytes

Monocytes Primary Immune relevant 50 Hz

1 mT

5–45 min

Yes (34)

Peritoneal neutrophils

isolated from male SD rats

Neutrophils Primary Immune relevant 60 Hz

0.1 and 2.0 mT

up to 1000 s

Yes (35)

Human peripheral blood

neutrophils

Neutrophils Primary Immune relevant 180–195 Hz

PEMF

10, 40, 60 µT

n.n.

Yes (36)

Human monocyte Monocytes Primary Immune relevant 50 Hz

1 mT

Overnight

Yes (37)

Mouse bone

marrow-derived

promonocytes and

macrophages

Macrophages Primary Immune relevant 50 Hz

1 mT

45 min or 24 h

Yes (38)

Peritoneal neutrophils from

SD rats (primed)

Neutrophils Primary Immune relevant 60 Hz

0.1 mT

up to 600 s

Yes (39)

Murine bone

marrow-derived

macrophages

Macrophages Primary Immune relevant 50 Hz

1.0 mT

45 min

Yes (40)

Human peripheral blood

neutrophils

Neutrophils Primary Immune relevant 75 Hz PEMF

2.5 mT

60 min

Yes (41)

Lymphocytes from male

albino Wistar rats

Lymphocytes Primary Immune relevant 50 Hz

20, 40, 200 µT

1 h

Yes (42)

AT478 murine squamous

cell carcinoma cells

Squamous cell carcinoma Cell line Other cell line 50 Hz

1 mT

16 min

Yes (43)

Human colon

adenocarcinoma cells

(Caco 2)

Colon adenocarcinoma Cell line Other cell line 50 Hz

1 mT

24, 48, 72 h

Yes (44)

(Continued)
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Mattsson and Simkó Grouping approach to ELF MF bioeffects

Table 1 | Continued

Cells Exposure

conditions

Oxidative

responsea

Reference

Human SH-SY5Y

neuroblastoma cells

Neuroblastoma Cell line Other cell line 50 Hz

1 mT

1 h

Yes (45)

Human prostate cancer

cell lines DU145, PC3,

LNCaP

Prostate cell lines Cell line Other cell line 60 Hz

1 mT

3, 6, 24, 48, 72 h

Yes (46)

Human SH-SY5Y

neuroblastoma cells

Neuroblastoma cells Cell line Other cell line 50 Hz

0.1 mT

24 h

Yes (47)

PC12 cells Neuronal pheochromocytoma Cell line Other cell line 50 Hz

0.1 or 1.0 mT

30 min

1–7 days

Yes (48)

C2C12 cells (muscle cells) Myoblast Cell line Other cell line 50 Hz

0.1 and 1.0 mT

5 and 30 min

Yes (49)

Human keratinocyte cells

HaCaT

Keratinocytes Cell line Other cell line 50 Hz

1 mT

3, 18, or 48 h

Yes (50)

AT478 murine squamous

cell carcinoma line

Squamous cell carcinoma Cell line Other cell line 400 Hz

0.11 mT

16 min

Yes (51)

Human keratinocyte cell

line HaCaT

Keratinocytes Cell line Other cell line 50 Hz

1 mT

4, 12, 72 h

Yes (52)

Rat-1 fibroblasts Fibroblasts Cell line Other cell line 50 Hz

1.0 mT

3 or 24 h

Yes (53)

AT478 murine squamous

cell carcinoma line

Squamous cell carcinoma Cell line Other cell line 3 Hz−3 kHz

0.11 mT

16 min

Yes (54)

3T3-L1 preadipocytes Preadipocytes Cell line Other cell line 180–195 Hz

PEMF

0.12 mT

36 min

Yes (55)

Human bone marrow

mesenchymal stem cells

(hBM–MSCs)

Mesenchymal stem cells Primary Other primary cells 50 Hz

1 mT

90 min

Yes (56)

aYes, positive finding; no, negative finding.

whether the response is an increase or a decrease compared to
the control situation) were taken into account after exposure to
MF, where any kind of oxidative response related data has been
detected. These include changes not only in ROS production,
in expression/activity of antioxidants, intermediate-release such
as inflammation related cytokines, nitrogen oxides, but also in
relevant protein expressions and/or phosphorylation.

Further on, the number of different cell types was identified
and compiled into the following groups: immune-relevant pri-
mary cells, immune-relevant cell lines, other primary cells, and
other cell lines (Table 1; where a summary of identified relevant
studies is presented). Within the two cell line groups, cancer or
non-cancer cells were sub-grouped. However, data are not shown
since we could not identify any trend.
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Mattsson and Simkó Grouping approach to ELF MF bioeffects

The main and most relevant exposure conditions were identi-
fied as the frequency of the applied field, frequency modulations
including pulsed-electromagnetic fields (PEMF), the flux density,
and the exposure duration. These conditions were sub-grouped
into larger units to identify relevant conditions for positive or
negative findings.

Within these 41 publications, 42 different “datasets” have been
identified utilizing 29 different cell types (Figure 1). The major-
ity of the studies, namely 36, reported positive findings regarding
oxidative responses after MF exposure (corresponding to a posi-
tive finding ratio of 0.86). Some investigators used different cell
types for comparative analysis. As shown in Figure 1, there is no
clear trend indicating a cell type dependent MF effect. However,
by pooling immune-relevant cells (independent if primary cells
or cell line), 22 positive findings were detected (out of 24). Using
non-immune-relevant cells or cell lines, out of 18 investigations,
14 showed positive findings.

By analyzing the employed frequencies, we considered non-
modulated sine wave ELF MF as a “group” (almost all studies
were at 50/60 Hz) and modulated MF as a second group where
PEMF or other frequency modulations or waveforms were used.
Only few studies investigated the effect of modulated MF. Of these,
seven studies showed positive findings and one no effect. The
majority of the studies, namely 34, employed non-modulated MF.
Among those, 29 investigations detected oxidative response, and 5
detected no effects (Figure 2). Because of the imbalance between
the number of studies of “modulated” and “non-modulated” (34
vs. 8) frequencies, it is not possible to detect an association or
trend whether the frequency parameter is relevant for a biological
response.

To analyze the flux density dependency of the performed stud-
ies, we grouped the employed field strength as follows: ≤0.1,
0.1–0.99, and ≥1 mT. Some investigators used several different flux
densities. Out of 68 investigations, 51 detected positive findings:
30 used ≥1 mT, 9 used 0.1–0.99 mT, and at 12 times ≤0.1 mT was
employed. No effects were detected in a total of 17 investigations
(2 in ≥1 mT, 8 in 0.1–0.99 mT, and 7 in the group of ≤0.1 mT).
It seems that below 0.1 mT and around 1 mT oxidative response
appears in the majority of the used immune-relevant primary cells
(23) (Figure 3). Based on this data, it is plausible to suggest that
≥1 mT induces oxidative responses (30) with a ratio of 0.94. At
the other flux density levels, this distinct picture does not appear.
The ratio for positive findings is in the group of <0.1 mT 0.63 and
in the group of 0.1–0.99 mT 0.53.

It has been discussed that the exposure duration is another
important condition for bioeffects. To identify if this is the case,
we introduced three groups of exposure durations: ≤60 min, >1 h
up to 24 h, and more than 1 day. Out of 69 investigations, oxida-
tive response was shown in 49 studies. It seems that the exposure
duration is not relevant for the biological response (Figure 4).
Short exposure (up to 60 min) resulted in 23 papers in an effect,
whereas no effects were reported in 7 papers (a ratio of 0.77). MF
exposure up to 24 h resulted in 18 positive cases and in 9 negative
cases (ratio 0.67), whereas after exposure up to day/s, in 8 positive
papers and in 4 negative results were reported (ratio 0.67).

To investigate the quality of the studies, where proper sham
control conditions, statistical analysis, and other criteria such as
blinded protocols were not taken into account (since this would
have reduced the number of relevant studies very dramatically),
we analyzed how often positive controls were applied as a quality

FIGURE 1 | Oxidative response as a positive or negative finding after exposure to ELF MF in different cell types.
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Mattsson and Simkó Grouping approach to ELF MF bioeffects

FIGURE 2 | Oxidative response as a positive or negative finding after exposure to non-modulated or modulated ELF MF in different cell types.

FIGURE 3 | Oxidative response as a positive or negative finding after exposure to different flux densities of ELF MF in different cell types.

control measure of the study. Of the positive findings, 21 inves-
tigations used positive controls. Many of these were investigating
co-exposure effects (62%) (Figure 5). Among the negative find-
ings, five papers reported the use of positive controls, all in studies
of co-exposure effects.

A good measure of the “effect size” is the most common
endpoint among the investigated oxidative responses, namely,
superoxide radical anion and/or ROS production. However, the
effect size is not amenable for grouping purposes, since it is

only one parameter. In 18 publications, superoxide radical anion
and/or ROS production were reported positive effects. Of these,
17 showed a change between 30 and 90% and one publication was
not reporting the size of the effect. Several investigators analyzed
this effect after more than one exposure/co-exposure condition.
In total, 20 observations showed an increase (up to 90%) and 4 a
decrease (20–40%) and 1 showed no effect due to a certain condi-
tion in superoxide radical anion and/or ROS release. However, out
of these 25 “datasets,” only four investigations reported a change
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Mattsson and Simkó Grouping approach to ELF MF bioeffects

FIGURE 4 | Oxidative response as a positive or negative finding after different exposure durations to ELF MF in different cell types.

FIGURE 5 |The use of positive controls in investigating oxidative
response as a positive or negative finding after exposure to ELF MF.

between 50 and 90%. All other data showed a change in super-
oxide radical anion and/or ROS production at a level of 30–50%
(Figure 6).

In summary, the majority of the reported studies were show-
ing an oxidative response after MF exposure. However, it seems
that none of the presented groups are decisive for the induction of
oxidative response after exposure to MF.

DISCUSSION
Health effects research regarding ELF MF has to a large degree
been driven by epidemiological findings where certain correla-
tions between long-term exposures and chronic diseases have been
found. The most apparent association is the increased risk for
childhood leukemia in the presence of elevated domestic exposure
levels (1). However, this is an example of a correlation between MF
and a disease outcome. There are no experimental findings that can

FIGURE 6 | Reactive oxygen species production as a measure of “effect
size” after exposure to ELF MF. The direction of change (increase: up and
decrease: down) has been considered.

provide a mechanistic explanation for such an outcome. This can
be interpreted in two ways: (1) there is no causative association
between long-term low-level MF exposure and chronic diseases
such as cancer; or (2) the systematic experimental studies that can
provide a mechanistic explanation have not been performed.

One of the biological end points that have been frequently
investigated is the oxidative status of the biological system. This
is due both to that it is reasonable to assume that early responses
to external stressors involve changes in oxidative homeostasis, dis-
cussed in several recent reviews (57–60) and also that possible
lasting effects on the oxidative balance could influence a number
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Mattsson and Simkó Grouping approach to ELF MF bioeffects

of cellular processes in such a way that disease conditions can
develop (61–64).

We have published some studies in this field (see Table 1 for
pertinent references), and also suggested that an early response
to ELF MF is effects on radical homeostasis [e.g., Ref. (13, 14)].
Based on this, we formulated our present hypothesis, viz. that ELF
MF exposure consistently triggers oxidative responses in cultured
mammalian cells. Taking the complexity of both the exposure sit-
uation (with various frequencies, waveforms, modulations, flux
densities, presence of other MF, duration, exposure periodization,
etc.) and the multitude of biological processes that are more or
less relevant endpoints into consideration, it is clear that it is not
necessarily easy to test this hypothesis. Therefore, we have decided
to use a simple grouping approach to systematically order the
available data. Grouping as a tool to make order in, e.g., chemical
toxicology situations is well established (65) but has to our knowl-
edge not been used in the field of bioeffects of MF. Nevertheless, we
have identified a clear need to use a systematic approach to analyze
the published data on the subject of MF exposure and oxidative
responses.

What then,has our test of the hypothesis revealed? The outcome
of the present analysis, based on relevant available data, is that the
hypothesis cannot be rejected. This is due to that the majority of
investigated studies showed positive effects, over a broad range of
cell types, exposure durations, and flux densities.

What is the support for the statement that the hypothesis is still
surviving, but needs to be tested with more precise and distinct
approaches? Regarding cell type specific responses, there is no sup-
port from the available data to say that specific cell types display
more or less sensitivity to the exposure (Figure 1). Rather, positive
effects were seen in all the cell type categories that we identified. A
caveat is that immune-relevant cells (primary cells as well as cell
lines) have been the most frequently used models. This is reason-
able, since immune cells employ rapid oxidative responses in their
activities. However, since so few studies (i.e., three) of the category
“other primary cells” have been studied, further investigations of
these cell types would be needed to develop this point further.

When analyzing the responses to various flux densities, sev-
eral observations are obvious. Most investigations used exposure
levels of 1 mT or higher, which almost completely resulted in an
oxidative responses, in all investigated cell types. Only 6% of the
investigations displayed no effects. Regarding exposures below
1 mT, the outcome is mixed. There are somewhat more positive
than negative studies in both lower exposure groups, although the
negative findings are well represented as well. Interestingly, there
are several positive studies also at or below 0.10 mT. The number
of independent studies employing flux densities below 0.10 mT
is low, however. Virtually no studies have employed flux densities
comparable to environmental levels (single microtesla or lower).
Unfortunately, there are very few of the studies that have been
performing real dose–response investigations, with several flux
density levels. A conclusion regarding a possible threshold effect
is also not possible to draw, based on these data. The possibility
of a real dose–response pattern does exist, which easily could be
addressed in future studies.

Neither the grouping of data based on frequency or modulation
(Figure 3) nor exposure duration (Figure 4) showed any support

for that very specific conditions are decisive for positive effects.
Although most of the studies have been performed at 50/60 Hz,
also other frequencies and pulsed MF were represented in both
positive and negative findings. A similar pattern is also present
when analyzing the importance of exposure duration. Short-
(minutes) to long-exposure times (days) were all used in the
studies where oxidative responses were noted.

The effect size of the responses in the form of ROS levels
were between 30 and 90% change from the control conditions
(Figure 6). These changes were mostly increases, although also
decreased levels due to exposure were found in a few studies (4
out of 24 studies where ROS responses were seen). Most changes
were in the interval 30–50%. This level of change must be con-
sidered modest. Various appropriate positive (chemical) controls
have been used in some of the studies. These compounds include
H2O2, the phorbol ester TPA, the bacterial endotoxin LPS, and the
cytostatic drug cisplatin. The increases in ROS levels due to these
chemicals varied from around 40% increase up to several 10-fold
increases. The latter large increases correspond to an “oxidative
burst” from the cells. This is a recognized characteristic of certain
immune cells (57) and has never been seen after MF exposure (13,
14). Whether the small changes caused by MF exposure would
have any biological significance is unknown. However, induction
of ROS release at lower levels has recently been connected to disease
development (61–64).

Regrettably, many studies did not include positive controls (see
Figure 5) at all. As many as 40–50% of the studies (both those
with and without any effect), lacked this crucial quality control.
Obviously, this reduces the usefulness and the credibility of the
findings, irrespective of whether they are positive or negative. We
also looked for two other study quality markers, i.e., blinded pro-
tocols and proper sham exposure conditions. Only a couple of
papers were employing both these routines.

Taking the quality criteria together, they weaken the conclu-
sions that can be drawn from these studies. One needs also to
keep in mind that the total number of studies that we investi-
gated is relatively few. We furthermore do not know to what extent
additional investigations have been unpublished, due to negative
findings. Such a publication bias has been documented elsewhere
when analyzing EMF biological effects (66). Taking everything
into account, our interpretation is that there is evidence support-
ing that ELF MF cause oxidative responses in mammalian cells,
most clearly at higher flux densities (1 mT or higher).

CONCLUSION
Available evidence suggests that ELF MF (modulated/unmodulated)
has an effect on oxidative status parameters, in both directions. The
strongest association between MF exposure and effects occur at or
above 1 mT, although effects are noted at or below 0.10 mT. Effects
are not dependent on cell type or on exposure duration. Further-
more, the effects are modest in comparison with the responses to
positive controls.
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