EFFECT OF PULSED ELECTROMAGNETIC ENERGY THERAPY ON PAIN AND FUNCTION IN PARTICIPANTS WITH KNEE OSTEOARTHRITIS

Binal A Gajjar, Megha S Sheth, Srishti S Sharma, Neeta J Vyas
SBB College of Physiotherapy, Ahmedabad, Gujarat, India

Correspondence to: Binal A Gajjar (gajjar_binal2228@yahoo.co.in)
DOI: 10.5455/ijmsph.2014.210220147 Received Date: 11.02.2014 Accepted Date: 21.04.2014

ABSTRACT

Background: Osteoarthritis (OA) of knee is an important cause of pain and functional limitation in older people. Some studies show pulsed electromagnetic energy therapy (PEME) reduces pain and disability. The efficacy of PEME therapy in knee osteoarthritis is not known in Indian population.

Aims & Objective: To compare the effect of PEME therapy versus conventional therapy on pain and function in participants with knee OA.

Materials and Methods: A quasi experimental study of 20 participants fulfilling the inclusion and exclusion criteria, by selective sampling was conducted at college of physiotherapy. Participants were randomly allocated into 2 groups. Group A was given PEME therapy with Magnetodyne with frequency 15Hz for 30 minutes, 6 days/week for 2 weeks. Group B was given conventional physiotherapy in the form of hot pack to the knee for 10-15 minutes. Both groups also received a set of 10 repetitions of quadriceps drill and stretching of tight muscles for 30sec-3 repetitions. Visual Analogue Scale (VAS) was used to assess knee pain and Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) was used to measure knee pain, stiffness and physical function.

Results: Difference in VAS and WOMAC scores were calculated using t-test. Mean difference in VAS score for Group A (4.08 ± 1.10) and Group B (1.40 ± 0.21) was significant with significant difference in favor of Group A (t= 7.57, p<0.001). Mean difference in WOMAC for Group A (27.50 ± 13.80) and Group B (8.50 ± 3.71), also showed a significant difference with more difference in Group A (t= 4.20, p<0.001).

Conclusion: PEME therapy reduces pain and improves physical function in participants with knee OA.

Key Words: Pulsed Electromagnetic Energy (PEME) Therapy; Pain; Function; Osteoarthritis

Introduction

Osteoarthritis of knee is a degenerative synovial joint disease. Osteoarthritis (OA) frequently affects the knee and afflicts the constantly increasing elderly population.[1] OA is the number one musculoskeletal disorder in the developed world and it ranks among the top problems of the health care systems in developed countries. It is the most common form of arthritis and is a leading cause of physical disability, increased health care usage, and impaired quality of life.[2] It involves cartilage loss, synovial inflammation, subchondral bone lesions and meniscus extrusion. Patients present with a combination of pain, deformity, inflammation, stiffness and muscle atrophy. With the lack of cure, non-surgical treatment is usually directed to symptomatic relief and prevention of functional dysfunction.[3]

Management options such as medication, exercise, self-management programs and surgery largely focus on providing symptomatic relief and maintenance of function, but do not, in general, address the disease process itself. Pulsed electromagnetic energy (PEME) therapy has proved to be safe and has also shown promising therapeutic effectiveness on bone and cartilage related pathologies, including knee and cervical spine OA.[4-9] Several studies recommend that PEME reduces pain and disability in people with knee OA. The efficacy of pulsed electromagnetic field therapy in knee osteoarthritis is not known in Indian population. So the objective was to study the effect of pulsed electromagnetic energy therapy on pain and function in participants with knee OA.

Materials and Methods

A quasi-experimental study was conducted at the physiotherapy department, General Hospital. Males and females above 40 years; having OA knee diagnosed by the orthopedic department according to the American College of Rheumatology criteria; experiencing mild to moderate pain and stiffness for more than 3 months were included. Individuals were excluded if they had other forms of arthritis; signs of acute inflammation, traumatic lower extremity injury, taken corticosteroids, visco-supplement injections, sedatives or opioids within the previous 3 months; had a history of knee infection, knee surgery or major limiting cardiovascular and neurological deficits. 20 participants, 10 in each group were included by convenience sampling. Nature and purpose of the study was explained and informed written consent was obtained.
The duration of intervention was 2 weeks. The study was conducted for 3 months from August to October 2013. The equipment used for low frequency pulsed electromagnetic energy (PEME) therapy was Magnetodyne Therapy device M80 with Applicator for the limbs and hot pack. The outcome measure used for pain intensity was Visual analogue scale (VAS)[10] and for physical function was Western Ontario McMasters Arthritis Index (WOMAC) [11]. Group A was given PEME using coil applicator. The parameters used for the treatment was frequency 15 Hz[12] with sinusoidal current 3 mA. Treatment duration was 30 minutes for 6 days in a week for 2 weeks. Group B was the control group in which hot pack was given to the knee for 10-15 minutes for 6 days in a week for 2 weeks. Both groups were given exercises in the form of a set of 10 repetitions of Q drills including ankle toe movements, static quadriceps exercise, last degree knee extension, straight leg raise in 3 positions: supine, side-lying and prone and high sitting knee extension. Stretching of the tight hamstrings, tendoachillis and rectus femoris was also performed with 30 sec hold for 3 repetitions. Level of significance was kept at 5%. All data are represented as the mean ± SD and were analyzed using SPSS version 16. Differences in VAS and WOMAC scores were calculated for both the groups. The two tailed paired t- test was used to compare within group changes from baseline for each observation. Between group differences were evaluated using the two tailed unpaired t- test.

Results

Comparison of difference in mean VAS and WOMAC scores within groups A and B are shown in tables 1 and 2. Differences between the groups are shown in table 3. Statistically significant difference was seen within the groups in both outcomes and between the groups too (p<0.001). No adverse reactions to therapy were observed. No adverse reactions to therapy were observed.

| Table-1: Mean difference in VAS scores in groups A and B |
|-----------------|-----------------|-----------------|-----------------|
| Group | Pre VAS (Mean ± SD) | Post VAS (Mean ± SD) | p value |
| A | 5.67 ± 1.12 | 1.59 ± 1.09 | <0.001* |
| B | 4.97 ± 1.52 | 3.57 ± 1.58 | <0.001* |
| * Significant |

| Table-2: Mean difference in WOMAC scores in groups A and B |
|-----------------|-----------------|-----------------|-----------------|
| Group | Pre WOMAC (Mean ± SD) | Post WOMAC (Mean ± SD) | p value |
| A | 38.80 ± 17.40 | 11.30 ± 6.01 | <0.001* |
| B | 44.10 ± 13.21 | 35.60 ± 14.14 | <0.001* |
| * Significant |

| Table-3: Mean difference in VAS and WOMAC scores between the groups |
|-----------------|-----------------|-----------------|
| VAS (Mean ± SD) | WOMAC (Mean ± SD) |
| Group A | 4.08 ± 1.10 | 27.50 ± 13.80* |
| Group B | 1.40 ± 0.21 | 8.50 ± 3.71 |
| p value | <0.001 | <0.001 |
| * Significant |

Discussion

Both the groups showed improvement in pain and function in participants with osteoarthritis of knee. The results of the present study indicate that PEME therapy is more effective in reducing pain and improving function in participants with OA knee than conventional treatment. The results are in accordance with those of Pipitone et al[13] who demonstrated a statistically significant benefit in terms of reduction of pain and disability in patients with knee OA resistant to conventional treatment in the absence of significant side effects.

PEME therapy has been demonstrated to enhance fibroblast[14], chondrocyte[15,16], osteoblast metabolism[17], modulate the effects of hormones and neurotransmitters on the receptors of different cell types[18]. Lannitti T et al[19] showed that PEME therapy produces a significant benefit in terms of reduction in knee-related pain, stiffness, and physical function in elderly patients with knee OA. Trock and colleagues also reported an improvement in pain and functional performance in patients affected by knee OA undergoing PEMF therapy for about 1 month, if compared to control group.[20]

J VanNguyen and Marks R described potential benefits of application of pulsed electromagnetic fields to osteoarthritic joints.[21] There is a decrease in joint and muscle pain, decrease in joint swelling and decreased joint swelling. This leads to increase in mobility, decrease in impairment, decrease in disability and improvement in quality of life.[21] These findings are similar to the present study. In opposition to the studies mentioned above, Özgüzlü and co-workers performed a study involving 40 patients undergoing PEMF therapy for 2 weeks and found no differences between sham & treated group concerning WOMAC pain, stiffness, and physical function scores.[22]

Exercise in the form of quadriceps drill was also prescribed to both the groups. Deyel GA et al[23] and Roddy E et al[24] also found that exercises are effective in improving physical function in participants with knee OA. The results of the study also show improvement in group B which was given hot pack and exercises. The mechanism of pain relief could be that heat leads to local vasodilatation which increases blood flow to the affected area. Pain may also be reduced by the pain gate control mechanism.[25] Roger J et al[26] reported that heating agents are one of the effective therapeutic modalities to elevate nociceptive threshold, which may reduce pain and improve function in Group B.

Thus the present study shows that low frequency PEMF
therapy can be used in clinical practice to relieve pain and to improve function in participants with OA knee and it is more effective than conventional treatment. Further studies can be designed to determine effectiveness of PEMF therapy in the long-term follow-up and outcome measure can include radiographic changes.

Conclusion

PEMF therapy produces a significant benefit in terms of reduction in knee related pain, and improves physical function in participants with knee OA.

References