Emergence of Organisms from Ordered Mesoscopic States of Water (Liquids)—Physical Instead of Chemical Origin of Life

" The origin of life enigma still baffles scientists. Since contemporary biology is strongly based on molecular (biochemical) outlook on life and there is an apparently insurmountable abyss between the chaos of random complex chemical systems and high orderliness of organisms, it is difficult to picture a stable path from the inanimate nature to full life. The question becomes much easier to handle, if we consider life (organisms) based not only on (bio)chemistry but also on endogenous coherent electromagnetic fields and partially ordered water. This was postulated, researched and also to some measure empirically proven by many authors. In contrast to the chemical level, this level of life may be called the physical level. It interacts in an orderly fashion with the chemical level and via this interaction active ordered and dispersed information characterizing life may emerge. The quantum field theoretical consideration of pure water postulates that even at room temperature miniscule compartments (so called coherent domains) of highly ordered water come out. In water solutions of ions and polar molecules these domains may become much more complex and may result in a higher level of orderliness called extended domains—coordinated clusters of basic coherent domains. They include coherent oscillations of electromagnetic field that may be resonantly connected to countless molecules and their interactions. Consequently, even in inanimate systems we may get a high orderliness that resembles the one of living beings. This does not hold only in theory or in very special systems, on the contrary, systems that demonstrate high orderliness and many striking similarities to organisms were either synthetically produced (coacervates, microspheres, bions) or even found in nature (nanobacteria, nanobes). If at least some of these systems has an open evolutionary path, they may be considered alive even if they lack chemical characteristics and preciseness of contemporary life."

Last modified on 20-Apr-18

/ EMMIND - Electromagnetic Mind