Mutual Interactions between Brain States and Alzheimer’s Disease Pathology A Focus on Gamma and Slow Oscillations


" Brain state varies from moment to moment. While brain state can be defined by ongoing neuronal population activity, such as neuronal oscillations, this is tightly coupled with certain behavioural or vigilant states. In recent decades, abnormalities in brain state have been recognised as biomarkers of various brain diseases and disorders. Intriguingly, accumulating evidence also demonstrates mutual interactions between brain states and disease pathologies: while abnormalities in brain state arise during disease progression, manipulations of brain state can modify disease pathology, suggesting a therapeutic potential. In this review, by focusing on Alzheimer’s disease (AD), the most common form of dementia, we provide an overview of how brain states change in AD patients and mouse models, and how controlling brain states can modify AD pathology. Specifically, we summarise the relationship between AD and changes in gamma and slow oscillations. As pathological changes in these oscillations correlate with AD pathology, manipulations of either gamma or slow oscillations can modify AD pathology in mouse models. We argue that neuromodulation approaches to target brain states are a promising non-pharmacological intervention for neurodegenerative diseases." {Credits 1}

" Given the prominence of these neural oscillations and events, it is not surprising that consistent associations can be seen between various brain disorders and abnormalities in neural oscillations or brain states [30,31,32,33,34]. For example, abnormalities in gamma oscillations have been recognised as a neurophysiological marker for various neuropsychiatric disorders and neurodegenerative diseases, such as schizophrenia [34], autism spectrum disorder (ASD) [35,36], depression [37,38], and Alzheimer’s disease (AD) [31]: more specifically, a reduction in sensory-evoked gamma power can be seen in schizophrenia and ASD patients, whereas varied changes in gamma oscillations have been reported in depressive disorders and AD patients [34,36,38,39,40,41]. Additionally, abnormalities in sleep patterns and sleep-related oscillations have been linked with depression [42], schizophrenia [43,44], addiction [45] and AD [46,47,48,49]." {Credits 1}

" Abnormalities in EEG patterns have been recognised since as early as the 1930s [30]. Since then, EEG abnormalities have been described in terms of the following three features [31]: (1) slower neural oscillations, (2) decreased complexity of EEG, and (3) reduced degrees of functional connectivity. Hence, these hallmarks of EEG abnormalities can be recognised as either a biomarker of or target for neuromodulation-based intervention. Indeed, accumulating evidence indicates that neuromodulation approaches have the potential to modify Alzheimer’s disease states [47,86]. In particular, targeting gamma oscillations and slow (<1 Hz) oscillations has provided encouraging results in AD mouse models [87,88,89,90,91,92]." {Credits 1}

{Credits 1} 🎪 Byron, N.; Semenova, A.; Sakata, S. Mutual Interactions between Brain States and Alzheimer’s Disease Pathology: A Focus on Gamma and Slow Oscillations. Biology 2021, 10, 707. © 2021 by the authors. This article is licensed under a Creative Commons Attribution 4.0 International License.


Last modified on 06-Aug-21

/ EMMIND - Electromagnetic Mind