DNA and Chromosome Damage in Human and Animal Cells Induced by Mobile Telephony Electromagnetic Fields and Other Stressors


" Induction of DNA fragmentation in fruit fly ovarian cells after in vivo exposure and chromatid-type aberrations in human peripheral blood lymphocytes (HPBLs) after in vitro exposure to mobile telephony (MT) electromagnetic fields (EMFs) from mobile phones are presented. In both cases, the biological samples were exposed in close distance to a commercially available second or third/fourth generation (2G or 3G/4G) mobile phone handset during an active phone call in “talk” mode. The DNA fragmentation in fruit fly ovarian cells induced by 2G MT EMFs was compared with that induced by 50 Hz magnetic fields (MFs) similar to or much stronger than those of high-voltage power lines or a pulsed electric field (PEF) of similar characteristics with EMFs of atmospheric discharges (lightning) under identical conditions and experimental procedures. Respectively, the degree of chromosomal damage induced by in vitro exposure of HPBLs to 3G/4G MT EMF was compared to that induced by a high caffeine dose (~ 290 times above the permissible single dose for an adult human) administered to blood samples of the same subjects under identical conditions and experimental procedures. In the first case, it was shown that MT EMFs are much more damaging than high-voltage power line MFs or the PEF and more damaging than previous other stressors tested on the same biological system, such as certain cytotoxic chemicals, starvation, and dehydration. In the second case, it was shown that MT EMFs are similarly and even more damaging than the above extreme caffeine dose. The combination of this caffeine dose and the 3G/4G MT EMF exposure increased dramatically the number of aberrations in the blood samples of all subjects, suggesting that MT EMF exposure may be significantly more dangerous when combined with other stressors. The above findings allow useful conclusions regarding EMF bioactivity, cell sensitivity, and relevant EMF exposure limits."


Last modified on 03-Feb-23

/ EMMIND - Electromagnetic Mind