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Abstract
Each of us made the remarkable journey from mere matter to mind: starting life as a quiescent oocyte (“just chemistry and 
physics”), and slowly, gradually, becoming an adult human with complex metacognitive processes, hopes, and dreams. In 
addition, even though we feel ourselves to be a unified, single Self, distinct from the emergent dynamics of termite mounds 
and other swarms, the reality is that all intelligence is collective intelligence: each of us consists of a huge number of cells 
working together to generate a coherent cognitive being with goals, preferences, and memories that belong to the whole and 
not to its parts. Basal cognition is the quest to understand how Mind scales—how large numbers of competent subunits can 
work together to become intelligences that expand the scale of their possible goals. Crucially, the remarkable trick of turning 
homeostatic, cell-level physiological competencies into large-scale behavioral intelligences is not limited to the electrical 
dynamics of the brain. Evolution was using bioelectric signaling long before neurons and muscles appeared, to solve the 
problem of creating and repairing complex bodies. In this Perspective, I review the deep symmetry between the intelligence 
of developmental morphogenesis and that of classical behavior. I describe the highly conserved mechanisms that enable the 
collective intelligence of cells to implement regulative embryogenesis, regeneration, and cancer suppression. I sketch the 
story of an evolutionary pivot that repurposed the algorithms and cellular machinery that enable navigation of morphospace 
into the behavioral navigation of the 3D world which we so readily recognize as intelligence. Understanding the bioelectric 
dynamics that underlie construction of complex bodies and brains provides an essential path to understanding the natural 
evolution, and bioengineered design, of diverse intelligences within and beyond the phylogenetic history of Earth.
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Introduction: from cells to cognition 
in the collective intelligence of organisms

All animals with advanced conventional cognitive capaci-
ties are the products of a very lengthy evolutionary process 
of accumulating gradual modifications of early microbial 
life. Even more remarkably, each of us personally took a 
journey in which matter acquired mind: we start life as a 
quiescent oocyte, and slowly remodel into an adult modern 
human with metacognitive, self-aware capacities and the 
ability to reason about entire counterfactual universes. How 

did the information processing capabilities of a single cell 
(Lyon 2006, 2015), with metabolic and physiological com-
petencies, inflate to that of a human, who can pursue goals 
of planetary scale whose endpoint may be far after their 
expected lifespan (Fig. 1)? Taking evolution, and especially 
developmental biology, seriously means coming to grips 
with the continuous process of transformation that enables 
configurations of matter to express increasingly greater 
degrees and kinds of cognitive capabilities: decision-mak-
ing, generalization, perception, causality detection, innate 
responses, learning, and advanced problem-solving. The 
emerging field of basal cognition (Baluška and Levin 2016; 
Levin et al. 2021; Lyon et al. 2021) strives to understand 
the evolutionary and embryological origins of our current 
behavioral capacities, and uncover the physical and com-
putational dynamics by which simple minds emerge from 
chemistry and scale over time.
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Fig. 1   Cognitive scaling. A Rat learning to press a lever to get a reward 
illustrates the principle of cognitive scaling: the rat is a collective of cells, 
some of which interact with the lever (skin of the paws) and some of 
which get the nutrient reward (intestinal cells). However, no single cell 
has both experiences, and it’s the causal structure of the tissue network 
that enables credit assignment for behaviors, so that an associative mem-
ory between an action and a reward can form that belongs to the whole 
animal and none of its parts alone. B Simple homeostatic cycle (in this 
case, for pH control) indicative of the kinds of low-level goals that single 
cells can pursue. C Anatomical homeostasis, such as reliably regenerat-
ing toward a complete, correct salamander limb regardless of where it 
is cut, and stopping when that goal is achieved, is an example of large-
scale (organ-level) collective behavior that emerges from the activity of 
a network of cells. D By merging together into computational networks, 

cells (neural or other) can increase the spatial scale of sensing, temporal 
memory and predictive power (sensing backward and forward in time, 
respectively). E Every agent has a “cognitive light cone” which demar-
cates the spatio-temporal scale of the goals toward which it can expend 
energy. This cone changes during evolution and during the lifetime of an 
animal from that of a single cell, with single-cell scale goals, to that of a 
morphogenetic system with organ-level goals and eventually a behavioral 
system with large-scale goals in 3D space. F This scaling of behavioral 
competencies and goal states in a given problem space can be imple-
mented by gap junction (GJ) connections, which enable a connection of 
homeostats into a network that scales up the setpoint, measurement, and 
action steps of evolutionarily ancient homeostatic loops. All images cre-
ated by Jeremy Guay of Peregrine Creative, used with permission. B-F 
taken with permission from (Levin 2022)
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It is essential to expand the scope of this inquiry beyond 
traditional metrics of intelligence and behavior (Fig. 2). As 
humans, we are very good at recognizing intelligence of 
medium-sized objects moving at medium speeds in three-
dimensional space: our sense organs face outward, and 
our capacities for detecting agency in this action space 
are strong (Mar et al. 2007; Repp and Knoblich 2007). 
However, assigning an IQ estimate to any being or object 
is, in effect, taking an IQ test ourselves: it is easy to miss 
intelligent behavior if one cannot recognize it. Imagine if 
we had a well-developed internal sense of our own body 
chemistry states—if we had the equivalent of a tongue that 
faced inwards into the bloodstream, it would then be natu-
ral for us to recognize all the remarkably clever things our 
liver and kidneys were doing with respect to managing us 
in the high-dimensional space of body physiology. Could 
recognizing diverse intelligence (in unfamiliar substrates) 
be essential to understanding the mechanisms and origins 
of conventional cognition and behavior?

William James anticipated a cybernetic approach to 
this problem by defining intelligence as a degree of “the 
ability to reach the same goal by different means” (James 
1890). This definition is not limited to brains or specific 
kinds of behaviors—it is intentionally agnostic about 
the composition of the agent. It challenges us to define 
a problem space, for any arbitrary system (including 
unconventional embodiments), and then formulate and test 
specific hypotheses about the competencies that the system 
can deploy in navigating that space. Traditional concepts of 
reflex responses, drives, memory, different kinds of learning, 
goal-directed activity, and even higher level capacities such 
as planning and creativity can all be defined in other problem 
spaces beyond the familiar 3D space, including metabolic, 
physiological, transcriptional, and anatomical spaces.

It has previously been proposed that the evolutionary path 
to conventional cognition involves evolutionary pivots across 
these problem spaces (Fields and Levin 2022). This suggests 
a broadening of the traditional systems to which these 
cognitive terms apply, and asking what is essential about 
them that is deeper than the specific frozen accidents that 
the course of terrestrial evolution has provided in its N = 1 
history of life on Earth (Clawson and Levin 2022). Here, 
through the lens of a gradualist, evolutionary perspective I 
explore the possible origins of cognitive capacities and the 
extension of these concepts to diverse embodiments.

The goal is not to review the steps of evolution of 
electrically excitable networks (Arendt et al. 2016; Brunet 
and Arendt 2016; Jekely 2019; Jekely et al. 2015; Keijzer 
and Arnellos 2017; Keijzer 2017; Levin et al. 2021; Lyon 
et al. 2021). Rather, I aim to provide a novel perspective on 
how to understand animal behavior in the broader context 
of “control of agential activity” in all its diverse guises. A 

deep unification is within reach, if we can find and exploit 
invariants—symmetries between a variety of processes and 
biological systems that shed light on generic principles 
for scaling of cognition and collective intelligence. In 
fact, all intelligence is collective intelligence—not just 
termite mounds and beehives. We too are emergent beings 
supervening on a collection of cells which all were once 
independent unicellular organisms. How do they work 
together to enable the creation of a novel being with goals 
and memories that belong to it and not to any of its parts? 
The key question is not only the scale-up of a unitary 
cognitive capacity, but the many-into-one transition: the 
emergence of minds from collectives (Levin 2019, 2021b), 
working in spaces beyond those of their component cells.

At stake is not only a better understanding of our evolu-
tionary history, but also insight into the relationship between 
genome and functional forms, and strategies for modifying, 
improving, and building novel synthetic cognitive agents 
(with implications ranging from exobiology to regenera-
tive medicine). The over-arching framework (Levin 2022) 
is fundamentally grounded in the continuity hypothesis, 
using biophysical and evolutionary approaches to identify 
invariants and symmetries across natural evolved forms, as 
well as hybrid and fully synthetic life forms (and perhaps, 
some day, truly alien beings) (Fields and Levin 2022; Levin 
2022). Here, I illustrate one segment of this framework’s 
roadmap by focusing on one highly instructive example: 
developmental bioelectricity as a precursor of brain-like pro-
cesses, which reveals not only evolutionary pivots between 
two different problem spaces, but also shows a path to solv-
ing the problem of collective intelligence across scales of 
organization. In this discussion, I intentionally avoid issues 
of first-person experiential consciousness, focusing instead 
on third-person observable capacities for behavior broadly. 
I describe how computation via voltage states enabled 
coordinate navigation of anatomical morphospace before 
brains and muscles enabled us to navigate 3D space, as an 
example of how familiar behavioral science concepts can be 
generalized to gain insight into the origin and mechanisms 
of cognition. Here, cognition is not restricted to advanced 
capabilities such as planning, self-aware metacognition, lan-
guage, etc., but is considered broadly in accordance with 
its continuous developmental and evolutionary origins. It 
serves as an umbrella term for all degrees of adaptive infor-
mation processing and problem-solving (Levin 2022), no 
matter how advanced or primitive. The focus on bioelectric-
ity below, as a kind of tractable cognitive glue, is one facet 
of a broader emerging research program designed to help 
detect, understand, and relate to a wide range of natural, 
artificial, and hybrid intelligences regardless of size scale 
or material implementation (Abramson and Levin 2021; 
Calvo et al. 2020; Fields et al. 2021; Fields and Levin 2022; 
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Fig. 2   Multiscale competency architecture operates across problem 
spaces. A Biological systems are nested dolls in which molecular 
networks give rise to subcellular components, such as cytoskel-
etal networks, which give rise to cells, tissues, organs, organisms, 
and swarms. This multiscale architecture is not only structural, but 
rather functional: each level solves problems (with some degree of 
competency) in its own action space. Each level deforms the energy 
landscape for the levels below and above, influencing those compo-
nents to do things they would otherwise not do. For example, when 
traversing the morphospace of different planarian head shapes, the 
bioelectric circuit controlling head morphogenesis alters the space 
of gene expression that is necessary to implement the specific ana-
tomical outcomes. B Familiar (conventional) behavior is navigation 
of a three-dimensional space, in which animal positions move to 

optimize certain reward functions. Although the human visual and 
cognitive repertoire is most accustomed to recognizing competency 
of typical (mid-sized, animal) agents navigating three-dimensional 
spaces, this deep concept integrates ideas across such wide-ranging 
fields as autonomous robotics (AI), evolutionary fitness landscapes, 
morphospaces, and cognitive behavioral studies. C There are in fact 
many problem spaces in which biological systems operate. Evolution 
progressively pivoted existing and novel mechanisms across prob-
lem spaces, to enable adaptive navigation toward specific goal states 
in metabolic, physiological, transcriptional, morphological, and ulti-
mately behavioral space. All images created by Jeremy Guay of Per-
egrine Creative, except for the planaria image of panel A, which was 
created by Alexis Pietak. Used with permission; A,B taken with per-
mission from (Levin 2022)
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Ginsburg and Jablonka 2021; Gokhale et al. 2021; Kuchling 
et al. 2020; Levin 2021b, 2022; Lyon 2019; Ramstead et al. 
2022; Smith-Ferguson and Beekman 2020; Timsit and Gré-
goire 2021; Watson et al. 2022).

Beyond standard model organisms: stories 
of plasticity and change

To begin to broaden the inquiry into the evolutionary origin 
and mechanisms of conventional cognition, it is important 
to consider several biological examples that stretch standard 
assumptions (Fig. 3). First, consider Physarum: a unicellu-
lar slime mold, which has been used as a popular model for 
basal cognition (Beekman and Latty 2015; Nakagaki and 
Guy 2007; Reid et al. 2016; Saigusa et al. 2008; Vallverdú 
et al. 2018). Recent work has shown that this organism can 
exhibit learning following repeated experience, eventu-
ally becoming willing to cross areas of noxious chemicals 
to receive a reward (Boisseau et al. 2016; Boussard et al. 
2019; Vogel and Dussutour 2016). Moreover, when placed 
in an arena containing distant inert glass objects of differ-
ent mass distributions, it uses a biomechanical mechanism 
to process information about its environment and then reli-
ably grow towards the heavier object (Murugan et al. 2021). 
These examples of learning and decision-making occur in the 
absence of a brain, neurons, or cellularization. From the per-
spective of evolutionary change across behavioral domains, 
one interesting thing is that for Physarum, its behavior is its 
morphological change. In this system, changing body shape 
to exploit the environment is how it implements behavior. 
Distinctions between morphological problems and behavioral 
problems are blurred by the biology, and the classical (Carte-
sian) conceptual distinctions between mind and body, which 
lead to separate communities for developmental biology and 
behavioral science, are now increasingly seen as artificial, 
for example, in the field of morphological computation in 
robotics (Bongard and Levin 2021).

It has been proposed that the mechanisms of memory estab-
lishment are the same as those which sculpt brain tissue devel-
opmentally (Galván 2010; Kandel and O'Dell 1992). Planaria 
offer another example, where anatomical and behavioral infor-
mation are tightly linked (Saló et al. 2009). These free-living 
flatworms, with a true centralized, bilaterian brain (Pagán 
2014; Sarnat and Netsky 2002), have the ability to regenerate 
their bodies—every piece of a planarian gives rise to a properly 
patterned new worm (Sheiman and Kreshchenko 2015). How-
ever, this process not only implements an anatomical memory 
of body structure. Tails of worms trained on specific tasks 
regenerate into animals that show recall of the original infor-
mation: the behavioral memories are apparently also imprinted 
onto the new brain as it forms (McConnell et al. 1959; Shomrat 

and Levin 2013). Thus, the information processing required to 
restore a specific body shape and that required to propagate the 
results of past experience despite cellular turnover and main-
tenance are tightly linked.

Metamorphosis tells a similar story. Caterpillars must 
become moths or butterflies, requiring turning a controller 
that operates a soft body in a two-dimensional lifestyle into 
one that operates a hard body in a three-dimensional world. 
The brain is largely dismantled and rebuilt in a new configura-
tion, but learned information persists (Alloway 1972; Black-
iston et al. 2008; Sheiman and Tiras 1996). Such dynamic 
plasticity is not just for invertebrates. Tadpoles of the frog 
Xenopus laevis can be produced with no primary eyes, but one 
eye on their tails; these animals can see out of an ectopic eye, 
which can connect to the spinal cord (Blackiston and Levin 
2013). In one generation, requiring no evolutionary adapta-
tion, the cellular hardware of a frog embryo can adapt to this 
radical reconfiguration of its visual sensory system.

Thus, radical changes of behavioral repertoires occur not 
only on evolutionary time-scales, but also at the level of 
an individual being—paralleling embryogenesis in raising 
profound questions about the transformation of agents by 
rearrangements of their parts—a key aspect of recognizing 
even traditional animals as fundamentally collective 
intelligences. A key aspect of understanding both basal and 
traditional cognition is formulating paradigms for predicting 
the properties and capabilities of emergent Selves from those 
of the components that comprise them.

This is fundamentally a story of the multi-scale compe-
tency architecture that biology employs. Animals are nested 
dolls made up of cells and tissues but this arrangement is not 
merely structural; cells were once unicellular organisms and 
have many competencies in their own problem spaces [an 
agential material which evolution molds by behavior-shap-
ing as much as changes in their hardware (Davies and Levin 
2023)]. When one “trains a rat” to obtain a treat by pressing 
a lever, the cells that interact with the lever (skin) are not the 
same cells that obtain the metabolic reward (intestine). No 
single cell had both experiences, and the owner of the asso-
ciative memory linking those two events is an emergent col-
lective intelligence (Fig. 1A). Likewise, even gene regulatory 
networks can learn relationships between their experiences 
(such as Pavlovian conditioning) as a collective, by virtue of 
the activity of very simple components (transcriptional ele-
ments) (Biswas et al. 2021; Watson et al. 2010). Conversely, 
the voluntary act of raising one’s arm reveals the functional 
connection between the highest levels of executive function 
to the depolarization of muscle cells—information crossing 
levels from that of human thoughts to the physiological status 
of individual cells. What is the coordination mechanism that 
enables this cross-level integrated information processing? It 
is developmental bioelectricity.
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Fig. 3   Unconventional agents: plasticity and robustness to change. A 
Tadpole of the frog Xenopus laevis can be made to have no primary 
eyes (white arrow), but instead have an ectopic eye on its tail (red 
arrow). A’ These ectopic eyes (white arrow) can connect to the spinal 
cord (red arrow). B Using an automated behavioral training and test-
ing apparatus, these animals can be shown to be able to see out of 
those eyes in a color vision training assay (B’) despite a novel visual 
system architecture that had no evolutionary adaptation—a remark-
able example of functional plasticity despite wild-type genetics. C 
Planarian flatworms can be trained to associate laser-etched circular 
regions (bumps) in a petri dish surface with food. When their heads 
are amputated (C’), their behavior shows recall of the original infor-
mation (place conditioning), showing the ability of memory to be 
stored outside the head and imprinted on newly produced brain tis-

sue (showing how functional, behavioral memories are dynamically 
integrated with the tissue-level patterning processes that create spe-
cific shapes in anatomical morphospace). D Caterpillars (and other 
insect larvae) metamorphose into very different forms, which requires 
extensive disassembly and rebuilding of the brain. Despite this, their 
memories persist, showing that individual agents change during their 
lifetime not only due to experiences and learning, but also can radi-
cally change with respect to anatomical structure. Panel D created by 
Jeremy Guay of Peregrine Creative. Panels A–C used by permission 
from (Blackiston et al. 2010; Blackiston and Levin 2013; Levin 2022; 
Shomrat and Levin 2013); C’,D used by permission from (Levin 
2022). (color figure online)
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Bioelectricity: the ancient cognitive glue

The functional properties of brains and nervous systems 
emerge from a network architecture in which neurons (and 
other cells like glia) communicate via changes in cellular 
resting potential (Vmem) and the resulting movement of 
neurotransmitter signals. Vmem, the bioelectric state of each 
nervous system component, is determined by an integrated 
balance of charges via the action of ion channels and pumps 
that enable the segregation of potassium, sodium, chlo-
ride, and protons (Fig. 4). Bioelectric states can propagate 
between cells via electrochemical synapses known as gap 
junctions (GJs) (Mathews and Levin 2017; Palacios-Prado 
and Bukauskas 2009). GJs form direct connections between 
the cellular internal milieus that enable the transfer of cur-
rent and small chemical messengers. In addition, bioelec-
tric states can also induce the movement of neurotransmitter 
molecules, such as serotonin, both through the extracellular 
space (via transporters and vesicles) and directly through 
gap junctions (Levin et al. 2006; Romero-Reyes et al. 2021). 
Crucially, every component in this network is functionally 
regulated by every other, and by its own action: ion chan-
nels and gap junctions are themselves often voltage-sensitive 
(Brink 2000; Palacios-Prado and Bukauskas 2009), while 
neurotransmitters move under electromotive force and regu-
lation, and in turn regulate ion channel properties.

This extremely rich set of feedback loops establishes 
computational capacity; for example, ion channels and 
GJs, as voltage-gated current conductances, are in effect 
transistors and possess a fundamental property of historic-
ity (memory in which past events impact current signaling 
state). These events do eventually impact other kinds of 
pathways (such as gene expression), but it is critical that 
the information processing in such networks is essentially 
physiological—the rapid propagation of signals via action 
potentials and slow waves across the network does not itself 
require transcriptional change. As a corollary, the informa-
tion content of this network cannot be read out at the tran-
scriptional or even proteomic level: channels open and close 
post-translationally, and the same channels can give rise to 
different voltage states depending on cells’ history, while 
diverse channels can give rise to the exact same voltage map.

There is no one-to-one mapping between the molecular 
state and the bioelectrical state, making it essential to study 
such systems in the living condition (unlike genetic and pro-
tein-level information, which can be studied in fractionated or 
fixed material, bioelectrical information disappears at cellular 
death). One implication of this feature is a critical separation 
of hardware and software (Boone and Piccinini 2016). Of 
course, the ability to form stable behavioral repertoires based 
on specific kinds of past experience, and the way in which 
it coarse-grains and generalizes from a sensory stream, are 

shaped by the network’s structure and physical properties. 
However, structurally identical networks can have learned 
different things after physiological experiences—bioelectric 
networks’ historicity means that their information content is 
not hardwired by their genetic specification but is dependent 
on past experience. One cannot know the informational content 
of a brain merely from knowing its neural layout and genome: 
the exact same brain can contain numerous different memories, 
goals, etc. This decoupling of the material state (protein con-
tent) from the information content is the first step to the most 
amazing aspect of neural networks: they enable mind to arise 
from matter. Specifically, neural networks are the functional 
layer in which physiology transitions to meaning: electrophysi-
ological events encode memories, plans, preferences, behavio-
ral capacities, and a first-person perspective—the content and 
shape of a cognitive Self, at whatever level of sophistication.

Neuroscience [via the research program of neural decod-
ing (Huth et al. 2016; Naselaris et al. 2009; Nishimoto et al. 
2011)] is committed to the idea that all of the content of 
minds, from the most primitive to the most complex, can be 
read out from (and thus resides in) the electrophysiological 
state of the network. Thus, just as inorganic electric circuits 
and transistors enable the jump from the physics of Ohm’s 
law to the truth tables of logic gates (basic elements of for-
mal thought), biological electric circuits and ion channels/
GJs enable the jump from chemistry to embodied meaning. 
A crucial aspect of this is that it provides a scaling up of 
agency: the homeostatic competencies of single neurons are 
integrated into a network that supports an emergent, higher 
order Self with memories, preferences, and other features 
that belong to itself but not to any of its components indi-
vidually. Bioelectric networks, with their inherent plastic-
ity, multiscale historicity, and learning capacity, are an ideal 
kind of “cognitive glue” that binds the primitive goal-direct-
edness (in the cybernetic sense) of single cells into a higher 
order system with a larger cognitive light cone (Fig. 1E). 
However, perhaps, the most fascinating and far-reaching 
aspect is that the key features that enable the supervenience 
of active information on a material substrate are not unique 
to brains and nervous systems at all (Fig. 4).

The use of bioelectric networks to enable coherent com-
putation to occur via a spatially and temporally distributed 
living medium is ancient, both in its molecular components 
(which date back to our unicellular ancestors) and in the 
algorithms by which it provides adaptive function. Even bac-
terial biofilms use electrical networks to synchronize activ-
ity within the proto-body of the colony (Martinez-Corral 
et al. 2019; Prindle et al. 2015; Yang et al. 2020). Evolution 
discovered long ago that networks made up of ion chan-
nels, gap junctions, and neurotransmitters as transduction 
machinery for electric circuit function provide a remark-
ably powerful and flexible way to process information. The 
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Fig. 4   Developmental and neural bioelectricity: a deep symmetry. A 
Familiar hardware of neurons consists of ion channels in the membrane 
which set voltage state, and electrical synapses (gap junctions) which ena-
ble those states to selectively propagate through the network. This enables 
a kind of software phenomenon—physiological events that process infor-
mation and guide behavior. The effort of neural decoding is the practical 
implication of the idea that all of the agent’s memories, plans, preferences, 
behavioral repertoires, etc. are instantiated in that bioelectrical layer of 
control and will be able to be read out (interpreted) once we understand 
the encoding. B Exact same architecture is used throughout the body, and 
forms the evolutionary precursor of the behavioral control system. All 
cells have ion channels, and most cells couple via regulated gap junctions 
to their neighbors, enabling the bioelectric physiology that guides growth 
and form during morphogenesis. Consistent with the evolutionary pivot 

model, these electrical networks also process information to enable navi-
gation: prior to navigating 3D space by controlling muscle action (when 
brains appeared), this system was used to process information and make 
decisions, while bodies navigated anatomical morphospace during embry-
ogenesis, regeneration, and cancer suppression. C This isomorphism 
between somatic and neural bioelectricity is what enables all of the tools 
of neuroscience to be used outside of the brain. Developmental bioelec-
tricity is studied by voltage imaging dyes, and functional techniques such 
as genetic, chemical, and optical ways of regulating ion channels and gap 
junctions in vivo. The tools (and many concepts) are broadly compatible 
across tissue types, enabling the insights of behavioral neuroscience to 
be portable toward understanding outcomes in other problem spaces. All 
images created by Jeremy Guay of Peregrine Creative and used with per-
mission; A,B taken with permission from (Levin 2022)
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degree of intelligent problem-solving behavior). It is critical 
to recognize and study the ways in which morphogenesis is 
not simply an emergent result of local rules but has complex, 
multi-scale feedback mechanisms that implement a degree 
of goal-directed activity and problem-solving in a way that 
was not directly encoded by genome (a hallmark of cogni-
tive mechanisms).

Memory and target morphology

The most basic component of proto-cognitive capacities 
is that of memory. Morphogenetic memory is ubiquitous 
in, for example, regeneration. A salamander whose limbs, 
eyes, tail, or other organs are amputated will regrow 
exactly the right structure and stop all of the complex 
cell proliferation and remodeling activity when, and only 
when, a correct structure is complete (Harris 2018; Pezzulo 
and Levin 2016). While no individual cell knows what a 
finger is or how many a salamander is supposed to have, 
the tissue collective clearly has a setpoint for anatomical 
homeostasis that functionally guides morphogenetic 
behavior (memory) as an error minimization (i.e., objective 
function) process. This pattern memory can, like any good 
memory, be modified by experience (it is stable, but also 
labile to the right kinds of stimuli). For example, repeated 
amputation of axolotl limbs leads to the tissue habituating to 
the loss of limb and eventually giving up trying to re-grow 
(Bryant et al. 2017). Trophic memory in deer (Bubenik and 
Pavlansky 1965; Lobo et al. 2014) enables an ectopic branch 
in their otherwise stereotypical antler structure to be formed 
year after year, at a specific point of earlier damage, long 
after the damaged antler rack has been shed (a remarkable 
example of memory of position in 3D space, used to guide 
the growth of bone and nerve toward a new pattern, by cells 
at the scalp that have to regenerate the large structure every 
year).

Re‑writing morphogenetic memories: ontogenetic 
and evolutionary timescales

The ability of morphogenetic machinery to modify its 
outcome due to experiences can be externally controlled 
(Fig. 9), analogous to the inception of false memories in 
neuroscience contexts (Liu et al. 2014; Ramirez et al. 2013; 
Vetere et al. 2019). For example, the number of heads in a 
regenerating planarian flatworm fragment is set by the state 
of a bioelectric circuit in the tissue (Beane et al. 2011). It has 
a built-in default of 1 (much like default, innate behaviors of 
brainy creatures), but is re-writable. Transient modification 
of the bioelectric state is remembered by the circuit, which 
can be experimentally re-set to read “2”: worms regenerat-
ing from such fragments indeed have two functional heads, 
one at each end (Durant et al. 2019; Oviedo et al. 2010). 

current use of these components to implement behaviors in 
3D space by controlling muscle activity represents an evolu-
tionary pivot: their original usage was to navigate anatomical 
morphospace (Fields et al. 2020) (that is, to control all cell 
behaviors toward specific morphogenetic outcomes). This 
conservation of both molecular mechanisms and algorithms 
is the reason that the workhorse tools of neuroscience work 
everywhere in the body—they do not distinguish between 
neuronal and non-neuronal uses. Clear morphogenetic ana-
logs (Pezzulo and Levin 2015) exist for optogenetics, ion 
channel mutants, neurotransmitter drugs—the tools of neu-
roscience—as well as for neuroscience concepts, such as 
memory, representation, navigation, perceptual bistability, 
and many others (Table 1).

The bioelectric system is so versatile that it was read-
ily exapted for behavior when nerve and muscle evolved 
(Keijzer et al. 2013), with two major changes: a significant 
speed-up (milliseconds, instead of hours, as the primary time 
scale) and a focus on temporal signaling (spiking patterns) 
for behavior instead of development’s reliance on spatial 
bioelectric patterns across tissues. Despite these differences, 
profound symmetries between the problems of morphogen-
esis and the problems of cognition exist; remarkably, while 
only recently explored in detail, this idea was already obvi-
ous to Alan Turing as early as 1952 (Turing 1952) and to 
others in the following decades (Grossberg 1978). Much as 
electrophysiological neural events are the fundamental cur-
rency that underlies the emergence of a coherent behavioral 
Self with some degree of cognitive activity, their slower, 
ancient ancestor mechanisms enable individual cells to 
cooperate toward coherent anatomical goals and deploy 
problem-solving capabilities in morphospace that belong to 
the “embryo”—an emergent collective.

Basal cognition without neurons: what 
dynamic bodies think about

The deep conceptual and mechanistic parallels between 
behavior and morphogenesis (Grossberg 1978) suggest a 
research program that can catalyze novel progress in the 
life sciences: accessing multiple levels of anatomical con-
trol (Figs. 5,6). To truly understand the origin of cognition, 
and conversely, to deploy the insights of neuroscience for 
regenerative medicine and bioengineering, it is important to 
investigate the proto-cognitive capacities of morphogenesis, 
specifically, the range of behaviors and capabilities that the 
collective intelligence of body cells can deploy toward adap-
tive behaviors in anatomical morphospace (Figs. 7, 8). These 
range from purely emergent, hardwired morphogenetic cas-
cades (corresponding to fixed, inborn instinctual behaviors) 
and complex, flexible ability to reach the correct target mor-
phology despite novel circumstances (corresponding to a 
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Table 1   Conceptual mapping between behavioral cognition and anatomical regulation

Conceptual mapping of ideas and phenomena between neuro-behavioral sciences to morphogenesis (listed in rough order of ascending levels of 
organization). These are discussed in more detail elsewhere (Pezzulo and Levin 2015, 2016).

Cognition Morphogenesis

Action potential movement within an axon Differential patterns of Vmem across single cells’ surface
Local field potential (EEG) Vmem distribution of cell group
Intrinsic plasticity Change of ion channel expression based on Vmem levels
Synaptic plasticity Change of cell:cell connectivity via Vmem’s regulation of gap junctional connectivity
Activity-dependent transcriptional changes Bioelectric signals’ regulating gene expression during patterning
Neuromodulation Developmental (pre-nervous) signaling via neurotransmitters such as serotonin moving under 

control of bioelectrical gradients
Direct transmission Cell:cell sharing of voltage via nanotubes or gap junctions
Volume transmission Cell:cell communication via ion levels outside the membrane or voltage-dependent 

neurotransmitter release
Synaptic vesicles Exosomes
Sensitization Cells become sensitized to BMP antagonists to stabilize neurogenesis
Functional lateralization Left–right asymmetry of body organs
Taste and olfactory perception Morphogenetic signaling by diffusible biochemical ligands
Activity-dependent modification of CNS Control of anatomy by bioelectric signaling within those same cells
Critical plasticity periods Competency windows for developmental induction events
Autonomic reflexes Wound healing
Voluntary movement Remodeling, regeneration, metamorphosis
Memory Shorter term: regeneration of specific body organs. Longer term: morphological homeostasis 

over decades as individual cells senesce; altering basic body anatomy in planaria by direct 
manipulation of bioelectric circuit

Generalization via multi-layer neural networks Generalization by bow-tie architectures of signaling pathways
Pattern completion ability of neural networks 

(e.g., attractor nets)
Regeneration of missing parts in partial fragments (e.g., planaria)

Forgetting Cancer, loss of regenerative ability
Addiction Limb becomes unable to regenerate without nerve once exposed to nerve
Encoding Representation of patterning goal states by bioelectric properties of tissue
Perceptual bi-stability Stochastic flipping between two target morphologies by planarian fragments in the cryptic state
McGurk effect Modification of interpretation of biochemical signals by bioelectric state of cells
Visual system feature detection Organ-level decision-making during morphogenesis
Mirror neurons and mirror focus in epilepsy Contralateral bioelectric signals mirroring sites of amputation damage in frog legs
Holographic (distributed) storage Any small piece of a planarian remembers the correct pattern (even if it has been re-written)
Instinct Hardwired patterning programs (mosaic development)
Behavioral plasticity Regulative developmental programs and regenerative capacity
Self-modeling Surveillance of anatomical state by brain
Goal-seeking Embryogenesis and regeneration work towards a specific target configuration despite 

perturbations
Sub-goaling in problem solving tasks Developmental modularity
Adaptivity and intelligence Morphological rearrangements carrying out novel, not hardwired, movements to reach the same 

anatomical configuration despite unpredictable initial starting state
Tabula rasa Cells could be a (semi) universal constructor, able to build any shape that can be specified via 

the pattern memory code
Attention and context salience Tissues responding to specific bioelectric states only when relevant (e.g., when in damage state)
Age-dependent cognitive decline Age-dependent loss of regenerative ability
Optogenetic insertion of false memories Optogenetic induction of regeneration or ectopic organs
Reading of semantic content from brain scans Detecting differences in target morphology from fluorescent voltage dye data
Executive control (free action) filtering down 

to regulate muscle motion
Large-scale circuit decisions that dictate whole bodyplan axial patterning transduced to 

individual cell gene expression changes as needed to implement large-scale phenotype
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Fig. 5   Examples of non-neural bioelectricity guiding behavior in 
morphospace. A Much as brain imaging allows the reading of bio-
electrical states in tissues to decode the properties of control circuits 
and behavioral competencies, voltage reporter dyes enable in  vivo 
tracking of the information processing in morphogenetic decision-
making. Here is shown one frame from a timelapse video of a frog 
embryo prior to formation of the face, showing a prepattern of resting 
potential states that demarcates the position of the future gene expres-
sion domains and craniofacial organs, such as the eyes, mouth, and 
lateral structures. In contrast to this endogenous pattern, pathologi-
cal patterns (such as those leading to tumors in A’) can be induced 
via, for example, oncogene injection. The location of tumors (A”, 
red arrowhead) can be predicted by the bioelectric dye signal which 
shows an aberrant electrical signature of cells that are disconnecting 
from the tissue-level network and reverting back to unicellular-scale 
behavior (i.e., metastasis and over-proliferation). B These bioelectric 
prepatterns are known to be instructive, because reproducing them 

elsewhere by misexpression of specific ion-channel mRNA, such 
as in this frog embryo, results in induction of whole organs, such 
as eyes (red arrow), which have the necessary internal tissue struc-
ture (immunohistochemistry in B’). This demonstrates a key aspect 
of behavior—binding complex downstream actions to a simple (low 
information-content) trigger. Moreover, this phenomenon exhibits the 
competency of recruitment (B”): when only a few cells are injected 
with the channel (cyan b-galactosidase marker label), they autono-
mously recruit normal neighbors to complete their morphological 
goal: building a normal-sized ectopic lens (brown tissue). C Method 
of inducing whole organs (control of large-scale movements in ana-
tomical morphospace) by modulating bioelectric states of the tissue 
circuit (i.e., incepting false memories into the network) can also, for 
example, produce ectopic forebrain (red arrow), or ectopic limbs (C’, 
C”, red arrows). Panels reused with permission from (Chernet and 
Levin 2013a; Levin 2009; Levin et al. 2017; Pai et al. 2012; Vanden-
berg et al. 2011). (color figure online)
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Remarkably, when cut again in multiple subsequent rounds 
of regeneration (with no further manipulation), the frag-
ments continue to result in two-headed animals. This shift in 
the target morphology for regeneration is permanent (unless 
the animal’s bioelectric pattern memory is reset back to a 
one-headed state by an experimental manipulation). Thus, 
much like in nervous systems, the architecture underlying 
memory in this space consists of electrophysiological hard-
ware with a highly reliable default behavior (guiding to the 
one-head region of morphospace) but also the capacity to 
be re-written toward other states, which ultimately feed into 
changes in gene expression and long-term changes in cell 
properties (Bischof et al. 2020; Pai et al. 2016; Pietak et al. 
2019). The standing pattern of resting potential differences 
which instructively determines the number of heads that 
will be built is quite literally the memory of the collective 
intelligence of the body—a bioelectric state that guides its 
behavior in anatomical morphospace and can be modified by 
experience in physiological space. This system matches all 
the key criteria for memory: it is long-term stable, yet labile 
(rewritable), enables discrete behaviors induced by stimuli, 
and can even be latent until needed (see below).

While the genome encodes the hardware (the cellular 
affordances, such as ion channels), the actual outcome is the 
result of context- and experience-sensitive electrophysiologi-
cal software that this hardware supports (see (Bongard and 
Levin 2021; Bongard and Levin 2023; Nicholson 2014) for 
an in-depth discussion of the machine analogy in biology). 
The question, of how many heads a given cellular collec-
tive will produce, is, surprisingly, not directly encoded in 
its genome because exactly the same, wild-type set of cells 
can produce 1-, 2-, or 0-headed planaria depending on their 
history. The same is true of a single embryonic blastoderm, 
which normally produces 1 “embryo”, but can produce mul-
tiple conjoined individuals if the cell:cell communication 
is temporarily disrupted (Lutz 1949). Of course, despite its 
essentially epigenetic [in the broad, original sense of the 
word (Ginsburg and Jablonka 2009; Jablonka 2012; Jablonka 
and Lamb 1995; Jablonka and Raz 2009)] nature, the bioelec-
trical control system works together with genetic information. 
Evolutionary tweaks of ion channel properties that eventually 
lead to genetic assimilation of bioelectrically induced pheno-
types is likely an important aspect of the evolution of body 
plans and other morphological features, much as the Baldwin 
effect is thought to be a key dynamic for the role of cognition 
and learning in evolutionary lineages (Baldwin 1896).

Reprogrammability, external manipulation, 
and representation

Three especially interesting analogs with behavioral cogni-
tion have been shown in this system. First, the advantage 

of such a system is the same as for neuro-cognitive archi-
tectures: it allows behavior modes that are not specifi-
cally genetically encoded, broadening the range of adap-
tive maneuvers that can occur in novel circumstances. The 
disadvantages are similar too: much as the mechanisms of 
brain function can be exploited by parasites using chemical 
(da Silva and Langoni 2009) or linguistic hijacking (Kur-
bel and Kurbel 2019; Panchal and Jack 2022), bioelectric 
control mechanisms also subject morphogenetic plasticity 
to potential hijacking (Williams et al. 2020). For example, 
much as host behavior can be specifically altered when 
parasites manipulate neurobehavioral systems to their own 
advantage (da Silva and Langoni 2009; Vyas and Sapolsky 
2010; Webster and McConkey 2010), the planarian mor-
phogenetic control system too can be hijacked not only by 
bioengineers (as described above) but also by commensal 
bacteria which can over-ride the default system and lead to 
two-headed regeneration (Williams et al. 2020).

Second, two-headed patterns can exist in a one-headed 
animal (prior to injury). This means that, analogously to the 
brain’s capacity for counterfactual thinking, a single physical 
structure [normal planarian body, with normal gene expression 
profiles (Durant et al. 2017)] can encode multiple memories 
of what the correct morphogenetic goal state is. In the case 
of a two-headed pattern in a one-headed host, this means that 
the bioelectrical pattern is not a read-out of what the anatomy 
is currently, but rather a representation of what it should be, 
weeks later, following regeneration if the animal is injured. It is 
in effect then, a counterfactual memory that is tied not to cur-
rent state but to a possible future. This primitive system is one 
way to begin to think about the origins of mental time travel 
that brains enable, with all of its obvious adaptive advantages. 
It should be emphasized that the traditional lens of viewing 
development as an emergent property of a dynamical system 
that simply ends up in specific states does not facilitate the 
kind of research direction that enabled this new biology to be 
discovered (and in general, the open-loop emergence paradigm 
makes it very hard to see how novel outcomes can be ration-
ally controlled). In contrast, it is specifically the search for 
an encoded representation as a pattern memory that guides 
morphospace navigation that led to the methods to directly 
observe (Figs. 5A,9A) and edit this information structure lead-
ing to permanent, top-down changes of the target morphology.

Finally, planarian regeneration offers an example of bista-
bility (Pezzulo et al. 2021)—a common feature of perceptual 
systems with top-down control. Exposure to ion channel drugs 
(a physiological experience akin to electrical signals from a 
retina or other sense organ, not a genetic change) can place 
the bioelectric circuit into a state in which it cannot decide 
between two outcomes and flips back and forth stochasti-
cally at each regenerative event (recall of target morphology). 
Fragments from such “cryptic” worms (Durant et al. 2017) 
will regenerate as one-headed or two-headed upon each cut, 
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randomly. These fascinating parallels between key features of 
cognitive and morphogenetic systems shed light on the origins 
of behavior and offer a simplified context in which to probe the 
complex aspects of conventional cognition.

Creative problem‑solving by adaptive 
morphogenesis: plasticity, not just emergent 
complexity

Another interesting aspect of cognition is creative problem-
solving: the ability of systems to achieve goals in novel cir-
cumstances or in ways that are different from their default 
[this is William James’ (James 1890) definition of intelli-
gence—the ability to achieve the same goals by different 
means]. This definition is suitably cybernetic in its framing 
(emphasizing substrate-independent function and a degree 
of autonomous agency, not a specific neural architecture 
of phylogenetic position). At the same time, it reminds the 
experimenter that the formalization of goals and behavior 
are not absolute but observer-dependent: claims of goal-
directedness (Clawson and Levin 2022; Levin 2023) must 
include a specification of a proposed problem space, a pro-
posed ensemble of states that are hypothesized to be the goal 
states, and testable claims of how much and what kind of 
competencies to reach the goal can be expected when that 
system is stressed away from its normal course of events 
(Fields and Levin 2022; Levin 2022).

One example of this plasticity of morphogenetic behavior 
(expanding on the default genetically encoded repertoire) is 
the fact that temporary exposure to a blocker of electrical 
synapses (i.e., an anesthetic) causes planarian fragments to 
create the heads of other species, with no genetic change 
required (Emmons-Bell et al. 2015; Sullivan et al. 2016). 
The bioelectric network incorrectly navigates to additional 
attractors in morphogenetic space that are normally used by 
species 100–150 million years of evolutionary distance—all 
without any genetic change needed (much like nervous sys-
tems allow an animal to dynamically remember or envision 
novel, distant scenarios without the need for genetic change 
to its brain hardware to enable each new thought). Much as 
with human patients exiting general anesthesia, who often 
hallucinate for a time while the brain network is finding its 
way back to the correct pre-anesthetic state, but then (usu-
ally) recover their correct personal identities, planaria that 
build the wrong species’ head shapes eventually remodel 
back to normal.

The robust regulative properties of bodies strongly empha-
size the system’s ability to solve novel problems. For example, 
early mammalian embryos cut in half do not form two half-
bodies (as any hardwired, purely emergent system would). 
Instead, each side recognizes the damage, makes up for it 
exactly, and creates one of a pair of monozygotic twins. Per-
haps even more remarkable is the case of newt kidney tubules 

(Fankhauser 1945). By default, they consist of 8–10 cells in 
cross section. However, if the cells of the early embryo are 
artificially made to be larger, fewer cells will be used, result-
ing in the same (normal) tubule diameter and overall body 
size. Remarkably, this can be pushed to a fascinating extreme: 
if the cells are made to be enormous, a single cell will bend 
around itself, producing the normal size tubule diameter. 
This example illustrates not only the ability to reach the same 
anatomical state despite diverse and novel starting condi-
tions with no need for periods of lengthy adaptation, but also 
the startling ability to call up diverse molecular mechanisms 
(cell:cell communication in normal conditions, but cytoskel-
etal bending in the case of huge cells) as needed in the service 
of a large-scale anatomical goal. This is an example of top-
down control, in which lower level mechanisms are activated 
based on high-level needs—an essential feature of nervous 
system architectures which enables the same phenomenon 
in behavioral space (e.g., executive-level decisions and high-
order goal states that filter down to control of actin dynamics 
in muscle cells as implementation machinery).

Another example of cellular plasticity beyond the default 
behaviors of the genetically specified hardware is that of 
Xenobots—the proto-organisms that spontaneously form 
from dissociated frog embryo skin cells (Blackiston et al. 
2021; Kriegman et al. 2020, 2021a). These living forms are 
motile (via cilia normally used to distribute mucus along 
the frog’s skin) and self-directed, performing a variety of 
spontaneous behaviors. The most remarkable novel behavior 
is that of kinematic self-replication: Xenobots build copies 
of themselves by rearranging loose cells provided to them in 
the medium. This is Von Neumann-style replication that is 
not, to our knowledge, used by any other species on Earth. 
Having been deprived of the normal ability to reproduce, 
Xenobots arrive at a novel solution within 48 h of being cre-
ated for the first time (they have no history of evolutionary 
selection to be a good Xenobot). These examples of real-
time morphological and functional adaptation, including 
classic ones, such as Slijper’s Goat (Slijper 1942), which 
acquired, in its own brief lifetime and not millennia, the 
body structures needed for upright bipedal walking, reveal 
the prodigious capacity for morphogenesis to enact creative 
solutions to novel problems using the same hardware. This 
is another essential hallmark of cognitive systems.

Thus, coherent, effective organisms form despite not 
being able to count on having the right number of cells, 
cells of the expected size, or even the same number of 
chromosomes (in the case of planaria and polyploid newts). 
This ability to handle novelty, not only in its external 
environment but also in that of its component parts, is 
the envy of the robotics and AI communities (Aubin et al. 
2022; Bongard and Levin 2021; Kriegman et al. 2021b). 
The on-the-fly competencies of the morphogenetic control 
system offers evolution the same thing that nervous 
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Fig. 6   Isomorphism between neuroscience, morphogenesis, and arti-
ficial intelligence. A Multiscale nature of information-processing 
architectures are shown, with the left column (neuroscience), middle 
column (morphogenesis), and right column (computer engineering). 
In each case (going down from top row), high-level phenomena such 
as behavior and morphological competencies are mediated by real-
time physiological dynamics that enable decision-making and learn-
ing, which operate on electrical networks that perform computations, 
which in turn are enabled by molecular machinery that implements 
voltage-gated current conductors (ion channels and gap junctions in 
the case of cells, and transistors in the case of digital computers). B 

In behavioral science, the full panoply of phenomena requires under-
standing of molecular synaptic and ion channel machinery, circuit 
functions, network capabilities, behavioral repertoires, and eventu-
ally executive-level goal-directed activity. Similarly, in developmen-
tal bioelectricity, the field aims for a “full stack” integration of tran-
scriptional networks that drive ion channel expression, to tissue-level 
voltage dynamics, to organ-level decisions about size and shape, ulti-
mately to high-level algorithms that control the axial bodyplan and 
organ layout. Images by Alexis Pietak, used by permission



Animal Cognition	

1 3

systems eventually offered: the ability to not over-train on 
evolutionary priors and instead generate problem-solving 
machines. Much like with behavior, it is impossible for 
evolution to foresee all of the novel circumstances that 
organisms will be required to deal with [well beyond 
the handful of possible environments usually studied in 
phenotypic plasticity and epigenetic controls (Fraebel et al. 
2020; Santos et al. 2015; West-Eberhard 2005a, b)]. The 
amazing inter-operability of life [e.g., chimeras, bio-tech 

hybrids, etc. (Clawson and Levin 2022)] is a testament to 
the fact that life uses a “play the hand you’re dealt” system. 
It produces cellular collectives which carry out, not a rote set 
of steps, but rather a suite of second-order functions [such as 
active inference (Pezzulo et al. 2015; Pezzulo et al. 2018a, b) 
and other computational tasks] to achieve coherent function 
in a wide range of changing and unpredictable scenarios, 
both with respect to environment and also its own parts.

Fig. 7   Morphogenesis as competent behavioral navigation. A Ani-
mals begin life as a single cell and then a ball of embryonic blasto-
meres, which eventually gives rise to the incredible complexity of 
the body (cross section of the human torso is shown here). B View-
ing anatomical structure as a morphospace of parameters describing 
possible configurations (here simplified to 2 dimensions, principal 
components (PC) 1 and 2), one can imagine this process as a hard-
wired transition from a starting state (S1) to an ensemble of states 
corresponding to viable adult organisms (goal states G). C However, 
when probed by perturbation (as any novel animal’s behavior is stud-
ied), traversals of morphospace are revealed to exhibit considerable 
flexibility. Here is shown an example of metamorphosis in the frog 

Xenopus laevis. Not only do normal tadpoles (starting from a stand-
ard, correct state) become frogs by rearranging the components of 
their face, but so do “Picasso tadpoles” in which all the organ posi-
tions have been scrambled. This is because the organs then move in 
novel paths and different distances, as needed, to achieve a normal 
frog craniofacial morphology, thus showing the capacity (C’) to move 
to the right region of morphospace from diverse starting positions 
(S1–S4) and despite various obstacles (local minima LM, in which 
less competent navigational agents would get stuck). Panels A,B,C’ 
by Jeremy Guay of Peregrine Creative; C courtesy of Douglas Black-
iston and Erin Switzer, and taken with permission from (Vandenberg 
et al. 2011)
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Fig. 8   Multiscale control of morphogenetic competency. A Early 
embryos of many species, including humans, when split, result not in 
half-bodies but in monozygotic twins, illustrating the capacity for cells 
to recognize departures from the normal path and adjust accordingly. 
B Cells of the kidney tubule in newts not only make up for artificially 
enlarged sizes (using fewer cells to make the same size of tubule and 
newt) but in fact can harness diverse low-level molecular mechanisms 
to achieve their target morphology: when cells get truly huge, instead of 
cell:cell cooperative mechanisms, the system uses cytoskeletal bending 
to allow cells to wrap around themselves to achieve the same anatomi-
cal outcome. This illustrates top-down control across scales of organiza-
tion, as also exploited in animal behavior. C Another aspect of multi-
scale architecture is the ability of cells to make collective decisions. 
In the control of the melanocyte → melanoma transition in tadpoles 
(driven by a disruption of bioelectrical cues), stochastic behavior can be 
observed: some percentage of the animals in a given cohort stay nor-
mal (left side) and some become hyperpigmented (right side). However, 
this decision is always made at the whole animal level: each animal is 
either entirely normal or entirely hyperpigmented—regardless of the 
stochasticity, the bioelectric circuit enables the cells to in effect toss the 
same coin and make a system-level coordinated decision. The same is 

seen (C’) when left–right patterning cues are disrupted in early chick 
development. Here is shown the expression of the gene Sonic hedgehog, 
which should normally be expressed only on the left side of Hensen’s 
node (red arrow), not the right (white arrow). This can be randomized 
by various treatments to be right-sided (middle panel) or bilateral 
(right panel), but each side of the Hensen’s Node decides as a coher-
ent system—speckling (decisions on individual cell level) is never seen. 
Each developmental domain makes a stochastic L vs. R decision as a 
unit, coordinating among all the cells as a tissue-level outcome. D In 
planaria, each fragment can regenerate an entire worm (a kind of holo-
graphic pattern memory). Critically, however, the anatomical decisions 
cannot be made locally according to any simple gradient scheme. When 
bisected, the anterior-facing and posterior-facing cells have radically dif-
ferent anatomical fates (building a head vs. a tail), but were direct neigh-
bors before the cut (i.e., at the same position along the axis). What to do 
after injury cannot be decided by purely local cues, but must be derived 
by communicating with the rest of the fragment to determine where in 
morphospace they are located, and thus what must be done to reach the 
correct target morphology. Panel A photo by Oudeschool via Wikimedia 
Commons; other images used with permission from (Blackiston et  al. 
2011; Levin et al. 2019) and Jeremy Guay of Peregrine Creative
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Fig. 9   Morphogenetic memory can be re-written non-genetically. 
A Normal planaria (left column) exhibit anterior gene expression in 
the head, and when cut into three fragments, produce normal one-
headed worms. In contrast (A’), planaria in which the normal bioel-
ectric pattern has been re-written by brief pharmacological targeting 
of ion channels (blue panels, green indicates depolarized regions on 
the voltage map) give rise to two-headed animals. Note that the bio-
electrical map shown is a map of the animal pre-cutting. B Thus, a 
normal planarian body can store one of 2 (at least) representations 
of what a correct planarian should look like. Much as in the nervous 
system, somatic bioelectricity enables changes in how systems navi-
gate morphospace based on experience, not only genetic rewiring. C 
Bioelectric circuit dynamics enable the planarian fragments to navi-
gate a morphospace which contains attractors for 0, 1, or 2 heads as 
the target state which each fragment seeks to achieve. D Ability to 
reliably reach the right morphogenetic state is indeed a kind of mem-
ory which is stable but re-writable. Two-headed animals continue to 

give rise to two-headed animals upon further rounds of amputation 
(deviation into an incorrect region of morphospace), without chang-
ing the genetics of the cells. The two-headed state can be reversed 
by the same kind of technique, targeting ion flux to re-set the target 
morphology representation back to a one-headed configuration. E 
Kind of perceptual bistability seen in ambiguous images (such as this 
famous “2 faces vs. vase” example) is also seen in morphogenetic 
systems: so-called Cryptic Worms have a destabilized target morphol-
ogy memory, producing stochastically one-head or two-head forms 
upon each round of cutting. WT wild type, CRPT cryptic state, DH 
double-head. This ethnogram, applied to morphogenetic experiments, 
shows the transition probabilities when cut in water (H2O) or octanol 
(8OH, a gap junction blocker) or SCH28080 (SCH, a proton–potas-
sium exchanger inhibitor). Images in panels B, C are by Jeremy Guay 
of Peregrine Creative. Others are used with permission from (Durant 
et al. 2017; Levin 2021a)
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Navigation: an invariant between morphological, 
behavioral, and other spaces

One formalism for understanding these capacities, and 
for learning to rationally manipulate them, is that of 
navigation (Fields and Levin 2022). Both behavioral and 
morphogenetic competencies can be modeled as various 
policies for navigating problem spaces. For example, during 
metamorphosis, the tadpole of Xenopus laevis can reach the 
correct frog face region of morphospace not only from its 
default starting position (a normal tadpole configuration), 
but also from a wide range of scrambled configurations 
(Vandenberg et al. 2012)—using new paths through that 
morphospace that nevertheless end up in the same goal 
region (Friston et  al. 2015; Pezzulo and Levin 2016). 
Neural wiring does this as well, finding new paths to achieve 
functional network architecture in mutant mice (Little et al. 
2009). As with certain animals that have automated, built-in 
behavioral repertoires, there are embryos (e.g., the nematode 
C. elegans) whose development seems largely hardwired. 
However, the vast majority of model species appear to use 
a combination of default modes and ability to improvise.

The full range of cognitive capacities for navigation of 
morphospace has only begun to be investigated—it is unclear 
how many of the advanced concepts from cognitive sci-
ence (place cells, path planning, etc.) will become relevant. 
Moreover, these concepts in neuroscience are themselves in 
flux (Keijzer and Arnellos 2017; Keijzer 2017; Levin et al. 
2021; Lyon et al. 2021; Pinotsis and Miller 2022). Given 
that cognitive capacities are present very widely across the 
biosphere, it is likely that advances in developmental bio-
electricity may help to  scaffold our understanding of neural 
systems and behavior.

A number of additional competencies (beyond the ability 
to achieve the target morphology despite modification to 
starting position or internal structures) have been found. For 
example, when an ectopic lens (in tail tissue) is induced 
by bioelectric modulation, it is sufficient to misexpress the 
channel only in a small subset of the needed cells: once their 
organ-level goal is specified, these cells will secondarily 
recruit other (un-modified) host cells as needed to achieve 
the critical mass needed to produce a normal-sized lens. 
While the engineer re-specifies the morphospace target 
region for a set of cells via a simple trigger, the necessary 
downstream modules (size control, substructure such as 
lens/retina/optic nerve placement, etc.) are automatically 
activated and do not need to be micromanaged (Gallistel 
1980; Powers 1973). This modular control architecture, 
implemented by bioelectric circuits that set properties of a 
developmental compartment, is fundamental to the action 
of the brain (Bizzi et al. 1995; Callebaut et al. 2005; Levin 
and Yuste 2022), and in both contexts provides an interesting 
counterbalance with mechanisms of global integration. 

More specifically, this kind of ability of the collective to 
ascertain needs and modify the behavior of the right number 
of components is seen across swarm intelligences beyond 
morphogenesis, from that of ants recruiting conspecifics to 
a task (Burchill et al. 2022; Collignon et al. 2014; Wilson 
1980), to neurons being recruited according to cognitive 
load (Bryer et al. 2013; Rossi et al. 2012).

E pluribus unum

The mechanisms that enable collectives to make high-
level decisions and deploy their components as needed 
(deform the action space of subunits toward the goals of 
the collective in a new problem space) are only beginning 
to be understood. However, those dynamics are likely 
related to two key properties of the gap junctions common 
to morphogenetic and neurocognitive systems (Peracchia 
2004; Trosko 2007). First, as with ion channels, they are 
themselves voltage-sensitive valves, enabling feedback 
loops and historicity. Second, by providing direct con-
nections between the intracellular milieus of cells, they 
provide an “owner wiping property” for stress signals 
and other molecular traces of experience: cells cannot 
tell whether a given memory molecule (e.g., calcium 
flux) belongs to itself or its neighbors. This leads to par-
tial erasure of individual identity for cells in a network, 
and enables a “collective” to scale up the measurements, 
stored goal states, and actions toward the emergence of 
larger scale agents operating in new spaces. Thus, while 
not necessarily an essential component of cognition in 
every possible living system (e.g., exo-biological con-
texts), bioelectric networks have been exploited exten-
sively by life on Earth to provide the integrated compu-
tations needed to scale the homeostatic competencies of 
the most humble self-reproducing units into agents with 
flexible, highly adaptive behaviors in complex problem 
spaces.

Interfacing with the collective intelligence: 
from evolutionary perspectives 
to biomedicine

Bioelectricity is fundamentally a mechanism to scale com-
putation. While bioelectric states do control cell-level prop-
erties, such as plasticity, proliferation, differentiation, etc. 
(Levin 2021a), the real power in this system is in determin-
ing large-scale behaviors at the tissue and organ level (Har-
ris 2021; Levin and Martyniuk 2018). It has been shown 
to control size (Daane et al. 2018; Perathoner et al. 2014; 
Yi et al. 2021), organ identity, and whole body axes (Levin 
2021a). A critical (and brain-like) aspect of bioelectrical 
networks is the hierarchical organization of functionality 
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and the association of complex morphogenetic activity 
with simple stimuli (triggers). Much like the central nerv-
ous system (CNS) allows complicated multi-step behaviors 
to be triggered by a low-information content stimulus, a 
brief and transient bioelectrical signal can induce whole 
eyes (Pai et al. 2012) and appendages (Adams et al. 2007; 
Tseng et al. 2010) in which all the internal details are han-
dled autonomously.

This key feature is currently beginning to be explored 
for regenerative medicine applications. For example, 
amphibian tails (including spinal cord) and limbs can 
be induced to regenerate by specific bioelectric states 
triggered by ion channel drugs or optogenetic stimula-
tion (Adams et al. 2013; Tseng et al. 2010). Severe brain 
defects in the frog model, induced by chemical teratogens 
or mutation of a critical neurogenesis gene (Notch), have 
been rescued by reinforcing appropriate bioelectrical sign-
aling (Pai et al. 2020, 2015; Pai and Levin 2022). Espe-
cially in the case of Notch mutation-induced malforma-
tions, the fact that such fundamental hardware defects can 
be in effect resolved “in software” (by drugs modulating 
Vmem to force the correct pattern) suggests the potential 
power of these interventions for addressing defects and 
traumatic injury for which we have few viable treatments 
today. This potential is akin to how behavioral accom-
modations can often make up for even severe structural 
defects (Slijper 1942). Similarly, tumorigenesis has been 
shown to be controllable by modulation of bioelectric 
state—normalizing cancer by reconnecting cells to the 
electrical network that harnesses them toward adaptive 
tissue homeostasis (Chernet et al. 2016, 2015; Chernet 
and Levin 2013b), a promising alternative to current toxic 
chemotherapy approaches.

Efforts to control the information processed by bioel-
ectric networks toward particular outcomes are now being 
guided by computational tools at multiple levels of organi-
zation, applying Marr’s (Marr 1982; Peebles and Cooper 
2015) taxonomy to control of body form just as neurosci-
ence addresses the problems of behavior at levels from that 
of synaptic proteins to psychiatric therapies (Adams et al. 
2016; Friston et al. 2014; Wang and Krystal 2014). However, 
it is likely that this work has only begun to scratch the sur-
face of what is possible. Biomedicine today remains largely 
focused on the hardware—micromanaging genes and path-
ways toward desired functionality— and has not yet internal-
ized the fundamental wisdom of the multi-scale approach 
in the neuro-behavioral sciences. The research summarized 
above suggests that behavior-shaping and training para-
digms for cells and tissues will likely enable much greater 
control of morphology, gene expression, and pathway func-
tion than can be realistically achieved bottom-up (just as 
training animals for specific behaviors is more efficient than 
attempting to run their muscles directly like puppeteers). 

Transformative improvements in capabilities in bioengineer-
ing and regenerative medicine are within reach, if we learn 
to appropriate as much as possible of the multi-scale wisdom 
of neuroscience and generalize it beyond neurons.

Conclusion

The impacts of behavioral neuroscience, and of its advances 
in explaining cognitive and proto-cognitive capacities, lie 
well beyond classical neural cells. Understood broadly, 
developmental bioelectricity provides an entry-point into 
unifying adaptive “behavior” and problem-solving intelli-
gence in diverse spaces in a way that makes it natural to 
think of plant, microbial, and even synthetic life (Baluška 
and Mancuso 2012; Baluška et al. 2022; Baluška and Reber 
2021a, b; Bassel 2018; Calvo et al. 2020, 2017; Debono 
and Souza 2019; Martinez-Corral et al. 2019; Prindle et al. 
2015; Reber and Baluška 2021; Schofield et al. 2020; Solé 
et al. 2016; Souza et al. 2017; Urrios et al. 2016; Yang et al. 
2020) using the same conceptual tools from behavioral and 
physiological sciences. The on-going debate around repre-
sentation and morphological computation is likewise being 
enriched by data in this field (Keijzer 1998, 2001).

The remarkable fundamental mechanism that enables a 
true emergent collective intelligence—a mind (at whatever 
scale of sophistication)—is ancient, and is also responsible 
for the plasticity and robustness of morphogenesis. Evolution 
re-used some of the same computational strategies, for 
binding competent signaling subunits into networks with 
memory and problem-solving capacity, to navigate a diverse 
set of spaces (physiological, anatomical, behavioral, and 
linguistic). Bioelectricity offers a tractable and powerful 
entry-point into understanding this process, because it 
serves as the cognitive medium of collective intelligence—
whether of neurons in the brain, or of cells in a body trying 
to achieve anatomical outcomes. Thus, firm conceptual 
(and disciplinary) distinctions between the science of the 
brain and those of the body are largely artificial hold-
overs from past limitations of technology and evolutionary 
understanding, and are increasingly being erased (Anderson 
et al. 2012; Beer 1995; Pezzulo and Levin 2015; Pfeifer et al. 
2007; Willems and Francken 2012). Future work will address 
the mechanisms by which developmental bioelectricity sets 
up the structure of the CNS (Pai et al. 2015) and the ways in 
which neural signals control morphogenesis (Belgacem and 
Borodinsky 2015; Borodinsky et al. 2012; Herrera-Rincon 
and Levin 2018; Herrera-Rincon et al. 2017); beyond the 
molecular mechanisms linking these two systems, there 
is also much opportunity for unification into a single 
underlying conceptual architecture.

Evolution exploits the generic computational properties 
of such networks (learning, generalization, counterfactual 
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Fig. 10   Future of the diverse intelligence field. A Because of the 
deep ability of living cells to form collectives with adaptive functions 
under novel circumstances, many diverse combinations of evolved 
material (cells, tissues), designed material (engineered smart materi-
als or implants), and software (AI systems) are viable. The future is 
likely to include a massive number of highly diverse agents with vari-
ous degrees of behavioral competency (A’: hybrots, cyborgs, bioro-
bots, etc.) which will be the subject of an expanded field of animal 

behavior research that is not limited to the set of natural animals here 
on Earth. B Mindmap of the emerging field at the intersection of the 
sciences of animal behavior and morphogenetic control, showing the 
many disciplines whose ideas feed into this new consilience, and the 
deep concepts and practical impacts that progress in this field will 
have. Images in panels A and A’ are by Jeremy Guay of Peregrine 
Creative
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memories, representation, distributed control, etc.) at many 
scales, building flexible problem-solving engines instead of 
fixed solutions to specific environments (Moczek et al. 2011; 
Oyama 2000; Sultan et al. 2022). While bioelectricity is an 
especially convenient modality, proto-cognitive capacities 
(such as learning) are found also in biochemical networks 
and biomechanical networks (Biswas et al. 2021; Stern et al. 
2020a, b; Watson et al. 2010). Emerging frameworks that 
focus on a ubiquitous multi-scale competency architecture, 
where each layer has some degree of behavioral and proto-
cognitive capabilities that await discovery, are already gen-
erating new capabilities and driving novel research programs 
(Aubin et al. 2022; Bongard et al. 2006; Davies and Levin 
2023; Kriegman et al. 2021b; Levin et al. 2017; Merrild and 
Rasmussen 2018; Pezzulo 2020; Pezzulo et al. 2021; Pez-
zulo and Levin 2015, 2016, 2018; Pfeifer et al. 2005; Tay-
lor et al. 2016). The implications of this approach (Fig. 10) 
range far beyond behavioral and developmental sciences, to 
encompass synthetic bioengineering of novel cognitive life 
forms (Clawson and Levin 2022; Ebrahimkhani and Levin 
2021; Kamm and Bashir 2014) and related fields, such as 
robotics and AI. All of these disciplines are beginning to 
intersect in the exciting emerging field of diverse intelli-
gence research, which will not only provide numerous useful 
applications in engineering and biomedicine, and help to 
understand our evolutionary history, but most importantly, 
will shed light on the deepest philosophical problems of the 
origin and nature of possible cognitive Selves.
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