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Abstract

The effectiveness, robustness, and flexibility of memory and learning constitute the very essence

of human natural intelligence, cognition, and consciousness. However, currently accepted views

on these subjects have, to date, been put forth without any basis on a true physical theory of

how the brain communicates internally via its electrical signals. This lack of a solid theoretical

framework has implications not only for our understanding of how the brain works, but also for

wide range of computational models developed from the standard orthodox view of brain neuronal

organization and brain network derived functioning based on the Hodgkin-Huxley ad-hoc circuit

analogies that have produced a multitude of Artificial, Recurrent, Convolution, Spiking, etc., Neu-

ral Networks (ARCSe NNs) that have in turn led to the standard algorithms that form the basis

of artificial intelligence (AI) and machine learning (ML) methods. Our hypothesis, based upon

our recently developed physical model of weakly evanescent brain wave propagation (WETCOW)

is that, contrary to the current orthodox model that brain neurons just integrate and fire under

accompaniment of slow leaking, they can instead perform much more sophisticated tasks of effi-

cient coherent synchronization/desynchronization guided by the collective influence of propagating

nonlinear near critical brain waves, the waves that currently assumed to be nothing but incon-

sequential subthreshold noise. In this paper we highlight the learning and memory capabilities

of our WETCOW framework and then apply it to the specific application of AI/ML and Neural

Networks. We demonstrate that the learning inspired by these critically synchronized brain waves

is shallow, yet its timing and accuracy outperforms deep ARCSe counterparts on standard test

datasets. These results have implications for both our understanding of brain function and for the

wide range of AI/ML applications.
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I. INTRODUCTION

The mechanisms of human memory remains one of the great unsolved mysteries in mod-

ern science. As a critical component of human learning, the lack of a coherent theory of

memory has far-reaching implications for our understanding of cognition as well. Recent

advances in experimental neuroscience and neuroimaging have highlighted the importance

of considering the interactions of the wide-range of spatial and temporal scales at play in

brain function, from the microscales of subcellular dendrites, synapses, axons, somata, to the

mesoscales of the interacting networks of neural circuitry, the macroscales of brain-wide cir-

cuits. Current theories derived from these experimental data suggest that ability of humans

to learn and adapt to ever-changing external stimuli is predicated on the development of

complex, adaptable, efficient, and robust circuits, networks, and architectures derived from

a flexible arrangements among the variety of neuronal and non-neuronal cell types in the

brain. A viable theory of memory and learning must therefore be predicated on a physical

model capable of producing multiscale spatiotemporal phenomena consistent with observed

data.

At the heart of all current models for brain electrical activity is the neuron spiking model

formulated by Hodgkin and Huxley (HH) [1] that has provided quantitative descriptions of

Na+/K+ fluxes, voltage– and time–dependent conductance changes, the waveforms of ac-

tion potentials, and the conduction of action potentials along nerve fibers[2]. Unfortunately,

although the HH model has been useful in fitting multiparametric set of equations to local

membrane measurements, the model has been of limited utility in deciphering complex func-

tions arising in interconnected networks of brain neurons [3]. From a practical standpoint,

the original HH model is too complicated to to describe even relatively small networks. This

has resulted in the development of optimization techniques [4–7] based on a much reduced

model of a leaky integrate-and-fire (LIF) neuron that is simple enough for use in neural net-

works, as it replaces all these multiple gates, currents, channels and thresholds with just a

single threshold and time constant [8–11]. However, while the LIF model is widely accepted

and ubiquitious in neuroscience, it is nevertheless problematic in that it does not generate

any spikes per se.
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A single LIF neuron can formally be described in differential form as

τm
∂U

∂t
= −(U − Urest) +RI, (1)

where U(t) is the membrane potential, Urest is the resting potential, τm is the membrane

time constant, R is the input resistance, and I(t) is the input current [12]. It is important

to note that equation (1) does not describe actual spiking. Rather, it integrates the input

current I(t) in the presence of an input membrane voltage U(t). In the absence of the

current I(t), the membrane voltage rapidly (exponentially) decays with time constant τm

to its resting potential Urest. In this sense the integration is “leaky”. There is no structure

in this equation that even approximates a system resonance that might be described as

“spiking”. Moreover, both the decay constant τm and the resting potential Urest are not

only unknowns, but assumed constant, and therefore significant oversimplifications of the

actual complex tissue environment.

It is a curious development in the history of neuroscience that the mismatch between

the observed spiking behavior of neurons and a model of the system that is incapable of

producing spiking was met not with a reformulation to a more physically realistic model,

but instead with what can only be described as an ad-hoc patchwork fix: the introduction of a

“firing threshold” Θ that defines when a neuron finally stops integrating the input, resulting

in a large action potential almost magically shared with its neighboring neurons, after which

the membrane voltage U is reset by hand back to the resting potential Urest. Adding these

conditions results in (1) being only capable of describing the dynamics that happen when the

membrane potential U is below this spiking ruler threshold Θ. It is important to recognize

that this description of the “sub-threshold” dynamics of the membrane potential until it has

reached its firing threshold describes a situation where neighboring neurons are not effected

by what is essentially a description of sub-threshold noise.

In short, the physical situation described by (1) is contradictory to many careful neuro-

science experiments that show, for example, that 1) the neuron is anisotropically activated

following the origin of the arriving signals to the membrane; 2) a single neuron’s spike

waveform typically varies as a function of the stimulation location; 3) spatial summation

is absent for extracellular stimulations from different directions; 4) spatial summation and

subtraction are not achieved when combining intra- and extra- cellular stimulations, as well

as for nonlocal time interference [13]. Such observation have lead to calls “to re-examine
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neuronal functionalities beyond the traditional framework” [13].

Such a re-examination has been underway in our lab, where we have developed a physics

based model of brain electrical activity. We have demonstrated that in the inhomogeneous

anisotropic brain tissue system, the underlying dynamics is not necessarily restricted by

reaction-diffusion type only. The recently developed theory of weakly evanescent brain waves

(WETCOW) [14–16] shows from a physical point of view that propagation of electromagnetic

fields through the highly complex geometry of inhomogeneous and anisotropic domain of

real brain tissues can also happen in a wave-like form. This wave–like propagation agrees

well with the results of the above neuronal experiments [13] as well as in general explains

the broad range of observed seemingly disparate brain spatiotemporal characteristics. The

theory produces a set of nonlinear equations for both the temporal and spatial evolution of

brain wave modes that include all possible nonlinear interaction between propagating modes

at multiple spatial and temporal scales and degrees of nonlinearity. The theory bridges

the gap between the two seemingly unrelated spiking and wave ’camps’ as the generated

wave dynamics includes the complete spectra of brain activity ranging from incoherent

asynchronous spatial or temporal spiking events, to coherent wave-like propagating modes in

either temporal or spatial domains, to collectively synchronized spiking of multiple temporal

or spatial modes.

In this paper we highlight some particular aspects of the WETCOW theory directly

related to biological learning through wave dynamics, and demonstrate how these principles

can not only augment our understanding of cognition, but provide the basis for a novel class

of engineering analogs for both software and hardware learning systems that can operate with

the extreme energy and data efficiency characteristics of biological systems that facilitate

adaptive resilience in dynamic environments.

We would like to emphasize that a major motivation for our work is the recognition that

there has been a rapidly growing focus in the research community in recent years on theories

of memory, learning, and consciousness rely on networks of HH (LIF) neurons as biological

and/or physical basis [17]. Every single neuron in this case is assumed to be an element

(or a node) with fixed properties that isotropically collects input and fires when enough has

been collected. The learning algorithms are then discussed as processes that update network

properties, e.g., connection strength between those fixed nodes through plasticity [18], or

number of participating fixed neuron nodes in the network through birth and recruitment of
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new neuron nodes [19], etc. In our paper we focus on different aspect of network functioning

- we assume that network is formed not by fixed nodes (neurons) but by a flexible pathways

encompassing propagating waves, or wave packets, or wave modes. Formally those wave

modes play in any network of wave modes the same role as single HH (LIF) node in network

of neurons, therefore, we often interchangeably use and substitute ’wave mode’ for ’network

node’. But, as any single neuron may encounter multiple wave modes arriving from any

other neuron, and synchronization with or without spiking will manifest as something that

looks like anisotropic activation depending on the origin of the arriving signals [13], our wave

network paradigm is capable of characterizing much more complex and subtle coherent brain

activity and thus shows more feature-rich possibilities for “learning” and memory formation.

The test examples based on our WETCOW inspired algorithms show excellent perfor-

mance and accuracy and can be expected to be resilient to catastrophic forgetting, will

demonstrate real-time sensing, learning, decision making, and prediction. Due to very effi-

cient, fast, robust and very precise spike synchronization, the WETCOW based algorithms

are able to respond to novel, uncertain, and rapidly changing conditions in real-time, and will

enable appropriate decisions based on small amounts of data over short time horizons. These

algorithms can include uncertainty quantification for data of high sparsity, large size, mixed

modalities, and diverse distributions, and will be pushing the bounds on out-of-distribution

generalization.

II. WEAKLY EVANESCENT BRAIN WAVES

A set of derivations that lead to the WETCOW description was presented in details

in [14–16] and is based on considerations that follow from the most general form of brain

electromagnetic activity expressed by Maxwell equations in inhomogeneous and anisotropic

medium

∇ ·D = ρ, ∇×H = J +
∂D

∂t
⇒ ∂ρ

∂t
+∇ · J = 0.

Using the electrostatic potential E = −∇Ψ, Ohm’s law J = σ ·E (where σ ≡ {σij} is

an anisotropic conductivity tensor), a linear electrostatic property for brain tissue D = εE,

assuming that the scalar permittivity ε is a “good” function (i.e. it does not go to zero or

infinity everywhere) and taking the change of variables ∂x → ε∂x′, the charge continuity
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equation for the spatial-temporal evolution of the potential Ψ can be written in terms of a

permittivity scaled conductivity tensor Σ = {σij/ε} as

∂

∂t

(

∇2Ψ
)

= −∇ ·Σ · ∇Ψ+ F , (2)

where we have included a possible external source (or forcing) term F . For brain fiber tissues

the conductivity tensorΣmight have significantly larger values along the fiber direction than

across them. The charge continuity without forcing i.e., (F = 0) can be written in tensor

notation as

∂t∂
2
i Ψ+ Σij∂i∂jΨ+ (∂iΣij) (∂jΨ) = 0, (3)

where repeating indices denote summation. Simple linear wave analysis, i.e. substitution of

Ψ ∼ exp (−i(k · r − Ωt)), where k is the wavenumber, r is the coordinate, Ω is the frequency

and t is the time, gives the following complex dispersion relation:

D(Ω,k) = −iΩk2i − Σijkikj − i∂iΣijkj = 0, (4)

which is composed of the real and imaginary components:

γ ≡ ℑΩ = Σij
kikj
k2

ω ≡ ℜΩ = −∂iΣijkj
k2

(5)

Although in this general form the electrostatic potential Ψ, as well as the dispersion rela-

tion D(Ω,k), describe three dimensional wave propagation, we have shown[14, 15] that in

anisotropic and inhomogeneous media some directions of wave propagation are more equal

than others with preferred directions determined by the complex interplay of the anisotropy

tensor and the inhomogeneity gradient. While this is of significant practical importance,

in particular because the anisotropy and inhomogeneity can be directly estimated from

non-invasive methods, for the sake of clarity we focus here on the one dimensional scalar ex-

pressions for spatial variables x and k that can be easily generalized for the multi dimensional

wave propagation as well.

Based on our nonlinear Hamiltonian formulation of the WETCOW theory [16], there

exists an anharmonic wave mode

Hs(a, a†) = Γaa†+ aa†
[

βaa+ βa†a
†− 2α

(

aa†
)1/2

]

(6)
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where a is a complex wave amplitude and a† is its conjugate. The amplitude a denotes either

temporal ak(t) or spatial aω(x) wave mode amplitudes that are related to the spatiotemporal

wave field Ψ(x, t) through a Fourier integral expansions

ak(t) =
1

2π

∞
∫

−∞

Ψ(x, t)e−i(kx+ωkt)dx, (7)

aω(x) =
1

2π

∞
∫

−∞

Ψ(x, t)e−i(kωx+ωt)dt, (8)

where for the sake of clarity we use one dimensional scalar expressions for spatial variables

x and k, but it can be easily generalized for the multi dimensional wave propagation as

well. The frequency ω and the wave number k of the wave modes satisfy the dispersion

relation D(ω, k) = 0, and ωk and kω denote the frequency and the wave number roots of the

dispersion relation (the structure of the dispersion relation and its connection to the brain

tissue properties has been discussed in [14]).

The first term Γaa† in (6) denotes the harmonic (quadratic) part of the Hamiltonian

with either the complex valued frequency Γ = iω + γ or wave number Γ = ik + λ that both

include a pure oscillatory parts (ω or k) and possible weakly excitation or damping rates,

either temporal γ or spatial λ. The second anharmonic term is cubic in the lowest order of

nonlinearity and describes the interactions between various propagating and nonpropagating

wave modes, where α, βa and βa† are the complex valued strengths of those different nonlinear

processes. This theory can be extended to a network of interacting wave modes of the form

(6) which can be described by a network Hamiltonian form that describes discrete spectrum

of those multiple wave modes as [16]

H(a,a†)=
∑

n

[

Hs(an, a
†
n)+

∑

m ̸=n

(

anrnma
†
m + a†nr

∗
nmam

)

]

(9)

where the single mode amplitude an again denotes either ak or aω, a ≡ {an} and rnm =

wnme
iδnm is the complex network adjacency matrix with wnm providing the coupling power

and δnm taking into account any possible differences in phase between network nodes. This

description includes both amplitude ℜ(a) and phase ℑ(a) mode coupling and as shown in [16]

allows for significantly unique synchronization behavior different from both phase coupled

Kuramoto oscillator networks [20–22] and from networks of amplitude coupled integrate-

and-fire neuronal units [12, 23, 24].
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An equation for the nonlinear oscillatory amplitude a then can be expressed as a derivative

of the Hamiltonian form

da

dt
=
∂Hs

∂a†
≡ Γa+ βa†aa

† + βaa
2 − αa(aa†)1/2, (10)

after removing the constants with a substitution of βa† = 1/2β̃a† and α = 1/3α̃ and dropping

the tilde. We note that although (10) is an equation for the temporal evolution, the spatial

evolution of the mode amplitudes aω(x) can be described by a similar equation substituting

temporal variables by their spatial counterparts, i.e., (t, ω, γ) → (x, k, λ).

Splitting (10) into an amplitude/phase pair of equations using a = Aeiφ and making some

rearrangements these equations can be rewritten as [25]

dA

dτ
= γA+ A2 [wa cos (φ− ψ)− α] , (11)

dφ

dτ
= ω + Awφ cosφ, (12)

where ψ, wa and wφ some model constants.

III. SINGLE MODE FIRING RATE

The effective period of spiking Ts (or its inverse – either the firing rate 1/Ts or the effective

firing frequency ωs = 2π/Ts) was estimated in [25] as

Ts =
2π

ω
√

1− γ2/γ2c
=

2π

ω
√

1− ω2
c/ω

2
, (13)

ωs = ω
√

1− γ2/γ2c =
√

ω2 − ω2
c , (14)

where the critical frequency ωc or the critical growth rate γc can be expressed as

ωc = γw, γc =
ω

w
, (15)

where

w =
wφ cosφc

α + wa cos (φc + ψ)
, (16)

and

φc = arctan

[

wa sinψ
√

α2 − (wa sinψ)2

]

. (17)
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FIG. 1. Plot of the analytical expression (14) for the effective spiking frequency ωs = 2π/Ts

(green) and the frequency estimated from numerical solutions of (11) and (12) (red) with several

inserts showing the numerical solution with indicated value of the criticality parameter cr = γ/γc

(detailed plots of numerical solutions used for generating inserts are included in appendix A). In the

numerical solution only γ was varied and the remaining parameters were the same as parameters

reported in [16].

Fig. 1 compares the single node results (13) to (15) with peak–to–peak period/frequency

estimates from direct simulations of the system (11) and (12). Several inserts show shapes

of numerical solution generated at the correspondent level of criticality cr

cr =
γ

γc
= w

γ

ω
. (18)

The above analytically derived single node results (13) to (15) can be directly used to

estimate firing of interconnected networks as they express the rate of spiking as a function of
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a distance from criticality, and the criticality value can be in turn expressed through other

system parameters.

A set of coupled equations for a network of multiple modes can be derived similarly to

single mode set (11) and (12) by taking a derivative of the network Hamiltonian form (9)

and appropriately changing variables. That gives for the amplitude Ai and the phase φi a

set of coupled equations

dAi

dt
= γiAi + A2

i (w
a
i cos (φi − ψi)− αi)

+
∑

j ̸=i

wijAj cos(φj − φi − δij), (19)

Ai
dφi

dt
= ωiAi + A2

iw
φ
i cosφi

+
∑

j ̸=i

wijAj sin(φj − φi − δij). (20)

In the small (and constant) amplitude limit (Ai = const) this set of equations turns into

a set of phase coupled harmonic oscillators with a familiar sin(φj − φi · · · ) form of phase

coupling. But in its general form (19) and (20) include also phase dependent coupling of

amplitudes (cos(φj − φi · · · )) that dynamically defines if the input from j to i will either

play excitatory (|φj − φi + · · · | < π/2) or inhibitory (|φj − φi + · · · | > π/2) roles (this is in

addition to any phase shift introduced by the static network attributed phase delay factors

δij).

IV. SYNCHRONIZED NETWORK MEMORY OF A SINGLE NODE SENSORY

RESPONSE

Let us start with a single unconnected mode that is excited by a sensory input. Based

on the strength of excitation the mode can be in any of the states shown in Fig. 1, with

activity ranging from small amplitude oscillations in linear regime, to nonlinear anharmonic

oscillations, to spiking with different rates (or effective frequencies) in sub-critical regime,

to a single spike-like transition following by silence in supercritical range of excitation. The

type of activity is determined by the criticality parameter cr = (γ0+γi)/γc where γc depends

on the parameters of the system (15) and γ0 determines the level of sensory input and γi is

the level of background activation (either excitation or inhibition). Hence, for any arbitrary
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ith mode

dAi

dt
= (γ0 + γi)Ai + A2

i (w
a
i cos (φi − ψi)− αi) (21)

dφi

dt
= ωi + Aiw

φ
i cosφi. (22)

As a result, the mode i will show nonlinear oscillation with an effective frequency ωs

ωs =
√

ω2
i − (γ0 + γi)2w2

i , (23)

wi =
wφ

i cosφ
c
i

αi + wa
i cos (φ

c
i + ψi)

, (24)

φc
i = arctan

[

wa
i sinψi

√

α2
i − (wa

i sinψi)2

]

. (25)

Next we assume that instead of a single mode we have some network of modes described

by (11) and (12) where the sensory excitation is absent (γ0 = 0) and for simplicity we first

assume that all the parameters (γi, ωi,αi,ψi,w
a
i , and w

φ
i ) are the same for all modes and only

the coupling parameters wij and δij can vary. The mean excitation level for the network

γ1 ≡ γi (i = 1..N) determines the type of activity the unconnected modes would be operating

and it may be in any of the liner, nonlinear, sub-critical or supercritical range. Of course,

the activity of individual nodes in network (11) and (12) depends on the details of coupling

(parameters wij and δij) and can be very complex. Nevertheless, at it was shown in [16], one

of the features of the phase–amplitude coupled system (11) and (12), that distinguishes it

both from networks of phase coupled Kuramoto oscillators and from networks of amplitude

coupled integrate and fire neurons (or actually from any networks that are based on spike

summation generated by neurons of Hodgkin-Huxley type or it’s derivations), is that even

for relatively weak coupling the synchronization of some modes in network (11) and (12)

may happen in a very efficient manner. The conditions for coupling coefficients when this

synchronized state is realized and every mode i of the network produce the same activity

pattern as sensory excited single mode, but without any external excitation, can be expressed

for every mode i as

∑

j

wij cos(δij) = γ0, (26)

∑

j

wij sin(δij) = 0. (27)
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This is necessary (but not sufficient) condition that shows that every recurrent path through

the network, that is every brain wave loop that do not introduce nonzero phase delays, should

generate the same level of amplitude excitation.

Even for this already oversimplified case of identical parameters, the currently agreed

lines of research proceed with even more simplifications and either employ constant (small)

amplitude phase synchronization approach (Kuramoto oscillators) assuming that all δij equal

to −π/2 or π/2, or use amplitude coupling (Hodgkin-Huxley neuron and the like) with δij

equal to 0 (excitatory) or π (inhibitory). Both of these cases are extremely limited and do

not provide a framework for the the effectiveness, flexibility, adaptability, and robustness

characteristic of human brain functioning. The phase coupling is only capable of generating

very slow and inefficient synchronization. The amplitude coupling is even less efficient as

it completely ignores the details of the phase of the incoming signal, thus is only able to

produce sporadic and inconsistent population level synchronization.

Of course, (26) and (27) are used as an idealized illustrative picture of critically syn-

chronized memory state formation in phase—amplitude coupled network (11) and (12). In

practice, in the brain the parameters of network (11) and (12), including frequencies, exci-

tations, and other parameters of a single mode Hamiltonian (6), may be different between

modes. But even in this case the formation of critically synchronized state follows the same

outlined above procedure, and requires that for all modes total inputs to the phase and the

amplitude parts (ω̄i and γ̄i) generate together the same effective frequency ωs satisfying the

relation

ωs =
√

ω̄2
i − γ̄2iw

2
i , (28)

where

γ̄i = γi +
∑

j

wij cos(δij), (29)

ω̄i = ωi +
∑

j

wij sin(δij). (30)

Overall, the critically synchronized memory can be formed by making a loop from as few

as two modes. Of course, this may require too large an amount of amplitude coupling and

will not produce the flexibility and robustness of multimode coupling with smaller steps of

adjustment of amplitude–phase coupling parameters. Figs. 2 and 3 show two examples of

13



50 100 150 200
t

-0.5

0.0

0.5

1.0

50 100 150 200
t

10

20

30

40

50

60

ϕ

50 100 150 200
t

-0.5

0.0

0.5

1.0

50 100 150 200
t

10

20

30

40

50

60

ϕ

0.5 1.0 1.5 2.0
t

-0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0
t

2

4

6

8

ϕ

A cosφ

φ

Ai cosφi

φi

Ai cosφi

φi

FIG. 2. (Top) The amplitude and phase of a single mode subcritical spiking. (Middle) The spiking

of multiple modes with different linear frequencies ωi critically synchronized at the same effective

spiking frequency (the units are arbitrary). The details of wavefront shapes for each mode are

different, but the spiking synchronization between modes is very strong and precise. (Bottom)

Expanded view of the initial part of the amplitude and phase of the mode shows the efficiency of

synchronization – synchronization happens even faster than the single period of linear oscillations.

network synchronization with effective frequencies that replicate the original single mode

effective frequency without sensory input. Ten modes were shown with the same parameters
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FIG. 3. (Top) The amplitude and phase of a single mode spiking in a close to critical regime.

(Middle) The spiking of multiple modes with different linear frequencies ωi critically synchronized

at the same effective spiking frequency that is close to critical frequency (the units are arbitrary).

Similar to subcritical spiking in Fig. 2, the details of wavefront shapes for each mode are different,

but the spiking synchronization between modes is very strong and precise. (Bottom) Expanded view

of the initial part of the amplitude and phase of the mode shows the efficiency of synchronization

– synchronization happens

of wa
i = wφ

i =
√
5, ψi = 2 arctan (1/3), φc

i = arctan (1/2), wi = 1/2 but with a set of

uniformly distributed frequencies ωi, (with a mean of 1 and a standard deviation of 0.58-
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0.59). The network coupling wij and δij were also selected from a range of values (from 0 to

0.2 for wij and −π/2 to π/2 for δij).

Again, for phase only coupling (δij equal to −π/2 or π/2) the synchronization is very

inefficient and only happening as a result of an emergence of forced oscillations at common

frequency in some parts of the network or in the whole network dependent on the details of

the coupling parameters. The amplitude coupling of Hodgkin-Huxley and the like neurons is

even less effective than phase-only coupling as it does not even consider the oscillatory and

wave-like propagation nature of the subthreshold signals that contribute to the input and

collective generation of spiking output. Therefore, expressions (28) to (30) are not applicable

for HH and LIF models as phase information, as well as frequency dependence, is lost by

those models and replaced by ad-hoc sets of thresholds and time constants.

Contrary to a lack of efficiency, flexibility, and robustness demonstrated by those state-of-

the-art curtailed phase-only and amplitude-only approaches, the presented model of memory

shows that when both phase and amplitude are operating together, a critical behavior emerg-

ing in the nonlinear system (9) gives birth to an efficient, flexible, and robust synchronization

characteristic of human memory, appropriate for any type of coding, being it either rate or

time.

V. APPLICATION TO NEURAL NETWORKS AND MACHINE LEARNING

The presented critically synchronized memory model based on the theory of weakly

evanescent brain waves – WETCOW [14–16] – has several very important properties. First

of all, the presence of both amplitude wij and phase δij coupling makes if possible to con-

struct an effective and accurate recurrent networks that do not require extensive and time

consuming training. The standard back propagation approach can be very expensive in

terms of both computations, memory requirements, and large amount of communications

involved, therefore may be poorly suited to the hardware constraints in computers and neu-

romorphic devices [26]. However, with the WETCOW based model it is easy to construct

a small shallow network that will replicate the spiking produced by any input condition

using the interplay of the amplitude-phase coupling (19) and (20) and the explicit analytical

conditions for spiking rate (13) and (15) as a function of criticality. The shallow neural

networks constructed using those analytical conditions give very accurate results with very
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little amount of training and very little memory requirements.

Another important advantage of the WETCOW algorithms is their numerical stability,

which makes them robust even in the face of extensive training. Because the system (19)

and (20) describes the full range of dynamics, from linear oscillations to spiking in the

perfectly differentiable form, it is perfectly differentiable. They thus are not subject to one

of the major limitations of current standard models - the non-differentiability of the spiking

nonlinearity for LIF (and similar) models, whose derivative is zero everywhere except at

U = Θ, and even at U = Θ the derivatives is not just large, but strictly speaking they are

not defined.

VI. MNIST DIGITS AND MNIST FASHION TESTS

FIG. 4. (Top) Several example images from MNIST database of handwritten digits. (Bottom)

Several example images from MNIST-like fashion product database of Zalando’s article images

designed as a direct drop-in replacement for the original MNIST dataset.

The performance and accuracy of WETCOW based learning approaches is easily demon-

strated on two commonly used databases: MNIST [27] and Fashion-MNIST [28]. Both the

original handwritten digits MNIST database Fig.4 (top) and an MNIST-like fashion product

database – dataset of Zalando’s article images designed as a direct drop-in replacement for

the original MNIST dataset – Fig. 4 (bottom) contain 60,000 training images and 10,000

testing images. Each individual image is a 28x28 pixels grayscale image, associated with a

single label from 10 different label classes.

The results for our WETCOW based model for a shallow recurrent neural network applied

to the MNIST handwritten digits Fig. 4 (top) and MNIST fashion images Fig. 4 (bottom)

are summarized in table I. In both cases the networks were generated for 7x7 downsampled
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images moved and rescaled to the common reference system. For each of the datasets table I

shows two entries, the first corresponds to an initial construction of a recurrent network that

involves just a single iteration, without any back propagation and retraining steps. In both

cases this initial step produces very good initial accuracy, on par or even exceeding the

final results of some of the deep ARCSes [29, 30]. The second entry for each dataset shows

highest accuracy achieved and the corresponding training times. Both entries confirm that

to achieve the accuracies that are higher than the accuracies obtained by any of the deep

ARCSes orders of magnitude smaller training times are required.

VII. CONCLUSION

This paper presents arguments and test results showing that recently developed physics

based theory of wave propagation in the cortex – the theory of weakly evanescent brain waves

– WETCOW [14–16] – provides both a theoretical and computational framework with which

to better understand the adaptivity, flexibility, robustness, and effectiveness of human mem-

ory, and, hence, can be instrumental in development of novel learning algorithms. Those

novel algorithms potentially allow the achievement of extreme data efficiency and adap-

tive resilience in dynamic environments, characteristic of biological organisms. The test

examples based on our WETCOW inspired algorithms show excellent performance (orders

of magnitude faster than current state-of-the-art deep ARCSe methods) and accuracy (ex-

ceeding the accuracy of current state-of-the-art deep ARCSe methods) and can be expected

to be resilient to catastrophic forgetting, and will demonstrate real-time sensing, learning,

decision making, and prediction. Due to very efficient, fast, robust and very precise spike

synchronization, the WETCOW based algorithms are able to respond to novel, uncertain,

and rapidly changing conditions in real-time, and will enable well-informed decisions based

on small amounts of data over short time horizons. The WETCOW based algorithms can

include uncertainty quantification for data of high sparsity, large size, mixed modalities, and

diverse distributions, and will push the bounds on out-of-distribution generalization.

The paper presents ideas of how to extract principles, not available from current neural

network approaches, by which biological learning occurs through wave dynamic processes

arising in neuroanatomical structures, and in turn provides a new framework for the design

and implementation of highly efficient and accurate engineering analogs of those processes
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TABLE I. Summary of accuracy and timing results obtained by shallow learning processing of

the original handwritten digits MNIST dataset [27] and the Fashion-MNIST dataset [28] using

WETCOW inspired algorithm and test implementation based on the ideas of critically synchronized

learning.

Accuracy Time Others

MNIST-

Digits		

(Without	

training)

0.9858-0.9883		

(117-142	errors	per	

10000	samples)

Several	

seconds

MNIST-

Digits	

(With	

training)

0.9986		

(14	errors	per			

10000	samples)

Several	

minutes

0.88-0.998	

14	hours	for	

0.9977	

accuracy	

MNIST-

Fashion	

(Without	

training)

0.9385		

(615	errors	per	

10000	samples)

Several	

seconds

MNIST-

Fashion	

(With	

training)

0.9742		

(258	errors	per	

10000	samples)

Several	

minutes

0.444-0.897	

From	1	to	50	

hours

and structures that could be instrumental in the design of novel learning circuits.
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Appendix A: Several examples of single mode solutions

FIG. S1. The amplitude and phase of a single mode for cr = 0.125.

FIG. S2. The amplitude and phase of a single mode for cr = 0.25.
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FIG. S3. The amplitude and phase of a single mode for cr = 0.5.

FIG. S4. The amplitude and phase of a single mode for cr = 0.75.
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FIG. S5. The amplitude and phase of a single mode for cr = 0.945.

FIG. S6. The amplitude and phase of a single mode for cr = 0.99.
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FIG. S7. The amplitude and phase of a single mode for cr = 0.995.

FIG. S8. The amplitude and phase of a single mode for cr = 0.9975.
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