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Abstract

The ion exchange in neurons can trigger time-varying magnetic fields that
interact with each other. In this work, the regulation of neuronal excitation
and inhibition by coupling magnetic field is investigated. Firstly, models of
magnetic field coupling under different conditions are proposed. The effect
of the magnetic field is described by magnetic flux. And then, the excitation
or inhibition magnetic field coupling is studied under different external exci-
tation currents. The firing mode of neurons can be changed by adjusting the
coupling intensity. In brief, we found that the magnetic field coupling can
regulate the excitation and inhibition of neurons, and the excitation mag-
netic field coupling can promote the firing of neurons. When the inhibition
magnetic field coupling is large enough, the neuronal firing mode is static.
Magnetic field coupling can be considered as a way to modulate the neuronal
excitation. In the end, the magnetic coupling and synaptic coupling equa-
tions are compared and the effects of modulation of magnetic field coupling
on neuronal excitation and inhibition are investigated. Studying the mag-
netic field coupling of neurons is important for understanding how neurons
transmit information.
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1. Introduction

The membrane potential of a neuron is the difference in the concentration
of charged ions inside and outside the membrane. When a neuron transmits
information, charged ions move in and out of the cell membrane to generate
an action potential. According to the Maxwell electromagnetic induction
theorem, the movement of charged ions can trigger time-varying electromag-
netic fields. The impact of magnetic fields on information transmission to
neurons can help us better understand and explore life’s mysteries.

The memristor is the fourth basic circuit element, representing the math-
ematical relationship between charge and flux [1]. Coexistence attractor
[2–4], hidden attractor [5–7], hyperchaotic attractor [8–10], circular chaotic
attractors[11] and other phenomena have been identified in the research of
chaos based on memristor, and such complicated dynamics have been ex-
ploited to encrypt [12–14]. Memristors have been used in circuit elements to
simulate biological synaptic functions [15–17]. Various types of memristors
were also being proposed. Fractional-order memristor[18–20], local active
memristor [21–23], and so on.

Inspired by the magnetic flux physical characteristics of memristor [1],
Ma et al. proposed to introduce magnetic flux into neuron model and HR
neuron model under electromagnetic radiation in 2016 to obtain a variety of
discharge modes [24, 25]. Based on this theory, The dynamic behaviors of dif-
ferent neuron models under electromagnetic radiation were explored [26–29].
For example, under the stimulation of electromagnetic radiation, FHN neu-
rons can produce hidden extreme multistability phenomena [26]. Complex
hidden cluster discharge patterns can be formed when the electromagnetic
induction effect was applied to HR neurons[27]. The electrical activities of
neurons under the electric fields were also considered in Refs. [28, 29]. Intro-
ducing external electromagnetic radiation through an inductor coil, Ref.[30]
proposed a new neuron model under the influence of time-varying electric
and magnetic fields as well as external electromagnetic radiation. By intro-
ducing Hamiltonian energy to measure magnetic field energy, the relationship
between different neuron discharge modes and energy under electromagnetic
radiation were studied, such as HR neuron [31, 32], FHN neuron [33, 34], and
Izhikevich neuron[35, 36]. The researchers looked beyond the effects of elec-
tromagnetic radiation on neurons to neural networks. In Refs [37, 38], the
chaotic dynamic behavior of the Hopfield neural network under the influence
of external electromagnetic radiation on some neurons has been studied. The
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influence of different external stimuli on the chaotic dynamics of the Hop-
field neural network was studied, and the energy transfer phenomenon of the
neural network under different stimuli was studied from the perspective of
Hamiltonian energy[39]. The modulation of different kinds of external elec-
tromagnetic stimulation on the dynamics of the Newman-Watts small-world
neural network model proved the feasibility of external electromagnetic stim-
ulation to control the evolution of the neural network model [40].

Neurons send messages to each other through synapses that can excite or
inhibit them. It would be interesting to discover another efficient method of
signaling communication between neurons. In [41], scholars studied magnetic
field coupling, which was the interaction between neuron magnetic fields, and
proposed the coupling neuron model. When both magnetic field coupling and
electrical synaptic coupling exist in neural networks, magnetic field coupling
can regulate the collective behavior of neural networks [42, 43]. In the case,
that magnetic field coupling, electric field coupling and synaptic coupling si-
multaneously act on the Newman-Watts small-world neuronal network, stan-
dard deviation and synchronization factor are introduced to provide useful
guidance for signal transmission between neurons [44]. The above studies
suggest that magnetic field coupling is another way of neuron signal propa-
gation.

However, it is a pity that the excitability and inhibition of neurons reg-
ulated by magnetic field coupling are seldom considered in previous work.
Synapses can make neurons excited or inhibited. As magnetic field coupling
is another way of neuron signal communication, the regulation of magnetic
field coupling on neuron excitation or inhibition should also be considered.

Based on the above discussion, this paper puts forward the concept of
excitation and inhibition of magnetic field coupling and proposes the corre-
sponding theoretical model. According to Abe’s theorem, the direction of the
magnetic field is determined by the direction of ion movement. Therefore,
the excitation and inhibition of neurons can be indicated by the direction
of the magnetic field. Based on this principle, the excitatory magnetic field
coupling and inhibitory magnetic field coupling models are proposed. It is
verified that excitatory magnetic field coupling can promote neuron excita-
tion, inhibitory magnetic field coupling can inhibit the corresponding neuron,
and the increase of coupling intensity to a certain degree makes the neuron
reach the static state.

The following of this paper is organized as, section 2 presents a model
for connecting two neurons with different types of magnetic fields; Section
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3 studies two magnetic field coupling states under four discharge modes;
Section 4 summarizes the full text.

2. Model description and scheme Considered

Synapses are the connections between neurons. And the importance of
magnetic coupling as a possible way of transmitting information between
neurons is undeniable. In order to study the modulation of excitation or
inhibition of coupling neurons by magnetic field coupling. In this paper, we
consider the response of the magnetic field coupled HR model to external
stimulus currents in two cases: Case I. Excitatory magnetic field coupling
model; Case II. Inhibitory magnetic field coupling model.

2.1. Excitatory magnetic field coupling model

In [41], a model of interaction between neuron magnetic fields was pre-
sented. In Refs [42, 44, 45], electrical synapses and magnetic fields were
used for information interaction between neurons. and the two neurons con-
nected by electrical synapses were both excited, so it can be considered that
the magnetic coupling connecting the two excited neurons is also excitatory
magnetic coupling. The corresponding excitatory magnetic field coupling
model is shown below:

ẋ1 = y1 − ax1
3 + bx1

2 − z1 + Iext − kρ(φ1)x1

ẏ1 = c− dx1
2 − y1

ż1 = r[s(x1 + 1.6)− z1]
φ̇1 = k1x1 − k2φ1 +Gex(φ2 − φ1)
ẋ2 = y2 − ax2

3 + bx2
2 − z2 + Iext − kρ(φ2)x2

ẏ2 = c− dx2
2 − y2

ż2 = r[s(x2 + 1.6)− z2]
φ̇2 = k1x2 − k2φ2 +Gex(φ1 − φ2),

(1)

where x, y, z and φ describe the membrane potential, recovery vari-
ables of slow current and adaptive current, and magnetic flux respectively.
Iext is the external stimulus current, the memristor coupling magnetic flux
and membrane potential, its conductivity is ρ(φ) = α + 3βφ2 . Gex(φ1 −
φ2)andGex(φ2−φ1) , which represents the interaction of two magnetic fields.
Gex represents the coupling strength of the corresponding excitatory mag-
netic field, and the other parameters (a, b, c, d, k, r, s, k1, k2) are constants
as (1.0, 3.0, 1.0, 5.0, 1, 0.006, 4, 0.5, 0.5).
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2.2. Inhibitory magnetic field coupling model

It is well known that synapses can be divided into inhibitory and excita-
tory synapses. Inhibitory synapses connect the neurons, and the presynaptic
neuron is activated while the postsynaptic neuron is inhibited. In this paper,
magnetic field coupling is another way of neuron information transmission.
Therefore, there is also a corresponding inhibitory magnetic field coupling.
That is, the upper-level neuron is activated, while the lower-level neuron is
inhibited, and they communicate with one another via magnetic field cou-
pling. In this work, we propose the inhibitory magnetic field coupled two
neuron model as:

ẋ1 = y1 − ax1
3 + bx1

2 − z1 + Iext − kρ(φ1)x1

ẏ1 = c− dx1
2 − y1

ż1 = r[s(x1 + 1.6)− z1]
φ̇1 = k1x1 − k2φ1 −Gin(φ2 + φ1)
ẋ2 = y2 − ax2

3 + bx2
2 − z2 + Iext − kρ(φ2)x2

ẏ2 = c− dx2
2 − y2

ż2 = r[s(x2 + 1.6)− z2]
φ̇2 = k1x2 − k2φ2 +Gin(φ1 + φ2),

(2)

where Gin is the coupling strength of the corresponding inhibitory mag-
netic field. It is well known that adjusting the applied excitation current
can alter the firing pattern of neurons. In order to explore the influence of
different degrees of magnetic field coupling intensity on neuronal firing mode
under different circumstances, we studied two magnetic field coupling cases
of the proposed model with four different firing patterns, as shown in Table
1.

Table 1: cases of different firing states according to magnetic field coupling types

Different states Iext = 1.8 Iext = 2.3 Iext = 3.2 Iext = 4

Excited-Excited Sec3.1-Case1 Sec3.1-Case2 Sec3.1-Case3 Sec3.1-Case4
Excited-Inhibited Sec3.2-Case1 Sec3.2-Case2 Sec3.2-Case3 Sec3.2-Case4

2.3. Stability analysis for the equilibrium states

The equilibrium Eq. (3) is found by zeroing the left side of Eq. (1)
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

y1 − ax1
3 + bx1

2 − z1 + Iext − kρ(φ1)x1 = 0
c− dx1

2 − y1 = 0
r[s(x1 + 1.6)− z1] = 0
k1x1 − k2φ1 +Gex(φ2 − φ1) = 0
y2 − ax2

3 + bx2
2 − z2 + Iext − kρ(φ2)x2 = 0

c− dx2
2 − y2 = 0

r[s(x2 + 1.6)− z2] = 0
k1x2 − k2φ2 +Gex(φ1 − φ2) = 0,

(3)

The equations may be solved using MATLAB, and the real solution is the
equilibrium point. The following approach is used to construct the Jacobian
matrix corresponding to Eq. (1).

J =



J11 1 −1 J14 0 0 0 0
J21 −1 0 0 0 0 0 0
J31 0 J33 0 0 0 0 0
J41 0 0 J44 0 0 0 J48
0 0 0 0 J55 1 −1 J58
0 0 0 0 J65 −1 0 0
0 0 0 0 J75 0 J77 0
0 0 0 J84 J85 0 0 J88


(4)

where J11 = 2bx1 − 3ax2
1 − k(α + 3βφ2

1); J21 = −2dx1; J31 = J75 = rs;
J85 = J41 = k1; J14 = −6kβφ1x1; J33 = J77 = −r; J88 = J44 = −k2 − Gex;
J48 = J84 = Gex; J55 = 2bx2 − 3ax2

2 − k(α + 3βφ2
2); J65 = −2dx2; J58 =

−6kβφ2x2.
The eigenvalues of the appropriate equilibrium point are calculated by

substituting it into the Jacobian matrix. Table 2 summarizes the findings.
The related equilibrium Eq. (5) is found by zeroing the left side of Eq.

(2). 

y1 − ax1
3 + bx1

2 − z1 + Iext − kρ(φ1)x1 = 0
c− dx1

2 − y1 = 0
r[s(x1 + 1.6)− z1] = 0
k1x1 − k2φ1 −Gin(φ2 + φ1) = 0
y2 − ax2

3 + bx2
2 − z2 + Iext − kρ(φ2)x2 = 0

c− dx2
2 − y2 = 0

r[s(x2 + 1.6)− z2] = 0
k1x2 − k2φ2 +Gin(φ1 + φ2) = 0,

(5)
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The Jacobian matrix of (2) is yielded as

J =



J11 1 −1 J14 0 0 0 0
J21 −1 0 0 0 0 0 0
J31 0 J33 0 0 0 0 0
J41 0 0 J44 0 0 0 J48
0 0 0 0 J55 1 −1 J58
0 0 0 0 J65 −1 0 0
0 0 0 0 J75 0 J77 0
0 0 0 J84 J85 0 0 J88


(6)

where J11 = 2bx1−3ax2
1−k(α+3βφ2

1); J21 = −2dx1; J31 = J75 = rs; J85 =
J41 = k1; J14 = −6kβφ1x1; J33 = J77 = −r; J44 = −k2 − Gin; J48 = −Gin;
J55 = 2bx2 − 3ax2

2 − k(α + 3βφ2
2); J65 = −2dx2; J58 = −6kβφ2x2;J84 = Gin;

J88 = −k2 +Gin.
The equilibrium point of a real number solution is first found by solving

equations, then replaced into the Jacobian matrix, and the stability of the
equilibrium point is determined by its eigenvalue. Table 2 summarizes the
findings.

Neither excitatory magnetic field coupling nor inhibitory magnetic field
coupling has an equilibrium point when Gex = 0 or Gin = 0. The applied ex-
citation current determines the equilibrium point in excitatory magnetic field
coupling, and the excitatory magnetic field coupling intensity has a minor ef-
fect on the eigenvalue but no effect on the equilibrium point. The inhibitory
magnetic field coupling intensity can affect both the equilibrium point and
the eigenvalue in the inhibitory magnetic field coupling. The stability of the
equilibrium point varies from unstable equilibrium point to stable equilibrium
point as the magnetic field coupling strength increases.

3. Numerical results and discussion

In numerical study, this section uses the fourth order Runge-Kutta al-
gorithm to solve the dynamic equation with transient period of 1200. Neu-
rons in the model of the initial value are set to (x1, y1, z1, φ1, x2, y2, z2, φ2) =
(0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0), the other parameters are chosen as a=1.0,
b=3.0, c=1.0, d=5.0, r=0.006, s=4, k=1, k1 = 0.5, k2 = 0.5, α = 0.1,
β = 0.02. For clear illustration, the influence of applied current on the elec-
trical activity of neurons can be illustrated by the inter spike interval (ISI)
bifurcation diagram.as shown in Fig.1.
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Table 2: Equilibrium points and their corresponding eigenvalues and stabilities

parameters Remarks
Equilibrium points

eigenvalues
Stabilities

Iext = 3.2,
Gex = 0.2

Equilibrium
points

-0.6865, -1.3561, 3.6542, -1.3729,
-0.6865, -1.3561, 3.6542, -1.3729

Unstable saddle point

eigenvalues
-6.8806, -6.8801, -0.8992, -0.4939,
0.1289, 0.1225, 0.0197 ,0.0213

Iext = 3.2,
Gex = 0.8

Equilibrium
points

-0.6865, -1.3561, 3.6542, -1.3729,
-0.6865, -1.3561, 3.6542, -1.3729

Unstable saddle point

eigenvalues
-6.8806, -6.8783, -2.1052, 0.0213,
-0.4939, 0.1342, 0.1225, 0.0187

Iext = 3.2,
Gex = 2

Equilibrium
points

-0.6865, -1.3561, 3.6542, -1.3729,
-0.6865, -1.3561, 3.6542, -1.3729

Unstable saddle point

eigenvalues
-6.8806, -6.8693, -4.5161, 0.0213,
-0.4939, 0.1365, 0.1225, 0.0183

Iext = 3.2,
Gin = 0.2

Equilibrium
points

-0.7000, -1.4499, 3.6001, -0.3130,
-0.6587, -1.1694, 3.7652, -2.4043

Unstable saddle-focus

eigenvalues
-6.9387, -6.7784, -0.6976±0.2024i,
0.1508, 0.0739, 0.0160, 0.0382

Iext = 3.2,
Gin = 0.8

Equilibrium
points

-0.6538, -1.1374, 3.7847, 2.5494,
-0.5515, -0.5207, 4.1940, -4.9600

Unstable saddle-focus

eigenvalues
-6.7882, -6.5947, -1.3027±0.8024i,
0.1048, 0.0259, -0.0202±0.0582i

Iext = 3.2,
Gin = 1.4

Equilibrium
points

-0.5654, -0.5986, 4.1383, 4.6618,
-0.4690, -0.0997, 4.5241, -6.7307

Unstable saddle-focus

eigenvalues
-6.6408, -6.7855, -1.9026±1.4007i,
-0.1846, 0.0022±0.0597i, -0.0255

Iext = 3.2,
Gin = 1.5

Equilibrium
points

-0.5517, -0.5220, 4.1931, 4.9551,
-0.4580, -0.0490, 4.5678, -6.9746

Stable focus-node

eigenvalues
-6.6418, -6.8424, -2.0024±1.5005i,
-0.2134, -0.0102±0.0601i, -0.0226

Iext = 3.2,
Gin = 2

Equilibrium
points

-0.4913, -0.2067, 4.4350, 6.2435,
-0.4120, 0.1513, 4.7520, -8.0501

Stable focus-node

eigenvalues
-6.7493, -7.1999, -2.5013±1.9992i,
-0.3363, -0.1025, -0.0430, -0.0159
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Figure 1: Bifurcation diagram of neuron membrane potential and different external
stimulus signals
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ISI reflects the distance between two peaks in the firing sequence diagram
of neurons. It is obvious that the firing modes of HR neuronal model experi-
enced several prominent transitions. When the external stimulus Iext is too
small, the neuron is in the quiescent state, and then with the increase of ex-
ternal stimulation, the neuron experiences spike discharge, burst discharge,
chaotic discharge and periodic oscillation. We can select the appropriate ex-
ternal excitation current to control the firing mode of neurons, as shown in
Fig. 2.

Figure 2: Two neurons with different initial values were sampled with different excitation
(the blue is the response of the first neuron, and the orange is the response of the second
neuron). (a) Iext =1.8;(b) Iext =2.3; (c) Iext =3.2; (d) Iext =4; The initial values are
selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)

As shown in Fig. 2, various modes of electrical activity can be triggered by
selecting the right applied excitation current. And two neurons with different
initial values fired in the same pattern without synaptic coupling or magnetic
coupling. When the external excitation current is fixed, the regulation of
magnetic field coupling on neuron excitation or inhibition under different
discharge modes is explored through bifurcation analysis of magnetic field
coupling intensity.
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3.1. Inhibitory magnetic field coupling

In case 1, two neurons with different initial values at peak discharge were
selected to change the intensity of magnetic field coupling, and the effect of
magnetic field coupling on neuron firing mode was detected. Bifurcation of
Iext with parameter Gin and neuron firing patterns are shown in Fig. 3 and
Fig. 4.

Figure 3: Bifurcation diagram of neuronal firing ISI with different Inhibitory magnetic
field coupling intensity (the blue is the response of the first neuron, and the orange is the
response of the second neuron)

It has been discovered that changing the magnetic coupling strength al-
ters the firing mode of neurons. With the increase of magnetic field coupling
intensity, the firing mode of neuron 1 becomes more and more complex, and
the observed spikes become more and more intensive. To observe the bifur-
cation diagram in greater detail, zoom in on the bifurcation diagram near
Gin = 0.8. Until the magnetic field coupling intensity reaches a certain de-
gree, the neuron starts to inhibit the firing. We can find that the bifurcation
diagram disappears, indicating that the neuron is stationary. With the in-
crease of magnetic coupling intensity, the amplitude and frequency of the
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Figure 4: Two neurons with different initial values were sampled with different Inhibitory
magnetic field coupling intensity (the blue is the response of the first neuron, and the
orange is the response of the second neuron). (a) Gin = 0 ; (b) Gin = 0.2 ; (c)Gin = 0.8 ;
(d) Gin = 2 The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
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membrane potential of neuron 2 became smaller and smaller, and reached
the quiescent state before neuron 1.

In case 2, the intensity of magnetic field coupling was changed to detect
the influence of magnetic field coupling on neuron firing mode. The bifurca-
tion diagram of ISI and the time series diagram are shown in Fig. 5 and Fig.
6.

Figure 5: Bifurcation diagram of neuron with different Inhibitory magnetic field coupling
intensity (the blue is the response of the first neuron, and the orange is the response of
the second neuron)

With the increase of excitation current, more inhibitory magnetic field
coupling is needed to make the neuron reach the quiescent state. The dif-
ferent discharge patterns of two neurons were observed. The two neurons
move from the same firing mode to a different firing mode as a result of in-
hibitory magnetic coupling.Fig.6 shows the existence of burst discharge and
subthreshold oscillation, and the existence of burst discharge and chaotic
state. And when the neuron is stationary, the membrane potential of neuron
1 is lower than that of neuron 2.

In case 3, two neurons with different initial values at chaotic discharge
were selected to change the intensity of magnetic field coupling, and the effect
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Figure 6: Two neurons with different initial values were sampled with different Inhibitory
magnetic field coupling intensity (the blue is the response of the first neuron, and the
orange is the response of the second neuron). (a) Gin = 0 ; (b) Gin = 0.2 ; (c)Gin = 0.8 ;
(d) Gin = 2 The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
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of magnetic field coupling on neuron firing mode was detected. Bifurcation
of ISI with parameter Gin and neuron firing patterns are shown in Fig. 7and
Fig. 8.

Figure 7: Bifurcation diagram of neuron with different Inhibitory magnetic field coupling
intensity (the blue is the response of the first neuron, and the orange is the response of
the second neuron)

As can be seen from the diagram, neurons can have a variety of discharge
modes by adjusting the magnetic field coupling intensity. With the increase
of magnetic field coupling intensity, the discharge modes of the two neurons
change from chaos state to burst state and period-1 discharge and static
state.

In case 4, two neurons at periodic oscillation were selected to change the
intensity of magnetic field coupling, and the effect of magnetic field coupling
on neuron firing mode was detected. Bifurcation of ISI with parameter Gin
and neuron firing patterns are shown in Fig. 9 and Fig. 10.

The discharge mode can be controlled by selecting suitable magnetic cou-
pling intensity. The two neurons move from the same firing mode to a dif-
ferent firing mode as a result of inhibitory magnetic coupling. When Gin=2,
the neuron firing pattern is subthreshold oscillation rather than resting, as
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Figure 8: Two neurons with different initial values were sampled with different Inhibitory
magnetic field coupling intensity (the blue is the response of the first neuron, and the
orange is the response of the second neuron). (a) Gin = 0 ; (b) Gin = 0.2 ; (c)Gin = 0.8 ;
(d) Gin = 2 The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
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Figure 9: Bifurcation diagram of neuron with different Inhibitory magnetic field coupling
intensity (the blue is the response of the first neuron, and the orange is the response of
the second neuron)
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Figure 10: Two neurons with different initial values were sampled with different Inhibitory
magnetic field coupling intensity (the blue is the response of the first neuron, and the
orange is the response of the second neuron). (a) Gin = 0 ; (b) Gin = 0.2 ; (c)Gin = 0.8 ;
(d) Gin = 2 The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
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shown in Fig. 10(d). And with the increase of external stimulus current, the
two neurons need more inhibitory magnetic coupling strength to reach the
resting state.

3.2. Excitatory magnetic field coupling

In case 1, Two neurons with peak discharge were stimulated by an excita-
tory coupling magnetic field, and then the coupling intensity was changed to
observe the discharge of the neurons without synaptic coupling, the results
are presented in Fig.11 and Fig 12.

Figure 11: Bifurcation diagram of neuron with different excitatory magnetic field coupling
intensity (the blue is the response of the first neuron, and the orange is the response of
the second neuron)

With the increase of magnetic coupling intensity, the firing mode of the
two neurons becomes more and more complex, and the observed spikes be-
come denser. The firing mode of the neurons changes from peak discharge
to period-2 discharge.

In case 2, Two neurons with burst discharge were stimulated by an exci-
tatory coupling magnetic field, and then the coupling intensity was changed
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Figure 12: Two neurons with different initial values were sampled with different excitatory
magnetic field coupling intensity (the blue is the response of the first neuron, and the
orange is the response of the second neuron). (a) Gex = 0 ; (b) Gex = 0.2 ; (c)Gex = 0.8 ;
(d) Gex = 2 The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
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to observe the discharge of the neurons without synaptic coupling, the results
are presented in Fig. 13 and Fig. 14.

Figure 13: Bifurcation diagram of neuron with different excitatory magnetic field coupling
intensity (the blue is the response of the first neuron, and the orange is the response of
the second neuron)

Neurons firing in period-2 discharge flip to firing in period-3 discharge
after being activated by an excitatory magnetic coupling. And it was found
that excitatory magnetic fields made neurons asynchronous.

In case 3, Two neurons with chaotic discharge were stimulated by an exci-
tatory coupling magnetic field, and then the coupling intensity was changed
to observe the discharge of the neurons without synaptic coupling, the results
are presented in Fig.15 and Fig. 16.

The bifurcation diagram shows that the two neurons are in chaotic dis-
charge, but through the sequence diagram, we can find that the excitatory
magnetic coupling promotes the neuron discharge.

In case 4, Two neurons with Periodic oscillation were stimulated by an ex-
citatory coupling magnetic field, and then the coupling intensity was changed
to observe the discharge of the neurons without synaptic coupling, the results
are presented in Fig.17 and Fig. 18.
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Figure 14: Two neurons with different initial values were sampled with different excitatory
magnetic field coupling intensity (the blue is the response of the first neuron, and the
orange is the response of the second neuron). (a) Gex = 0 ; (b) Gex = 0.2 ; (c)Gex = 0.8 ;
(d) Gex = 2 The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
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Figure 15: Bifurcation diagram of neuron with different excitatory magnetic field coupling
intensity (the blue is the response of the first neuron, and the orange is the response of
the second neuron)
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Figure 16: Two neurons with different initial values were sampled with different excitatory
magnetic field coupling intensity (the blue is the response of the first neuron, and the
orange is the response of the second neuron). (a) Gex = 0 ; (b) Gex = 0.2 ; (c)Gex = 0.8 ;
(d) Gex = 2 The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
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Figure 17: Bifurcation diagram of neuron with different excitatory magnetic field coupling
intensity (the blue is the response of the first neuron, and the orange is the response of
the second neuron)
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Figure 18: Two neurons with different initial values were sampled with different excitatory
magnetic field coupling intensity (the blue is the response of the first neuron, and the
orange is the response of the second neuron). (a) Gex = 0 ; (b) Gex = 0.2 ; (c)Gex = 0.8 ;
(d) Gex = 2 The initial values are selected as (0.2, 0.5, 0.1, 0.1, 0.3, 0.8, 0.2, 0.0)
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In conclusion, magnetic coupling has the ability to impact neuronal ex-
citement or inhibition. Excitatory magnetic field coupling can benefit to
neuron firing, but it can also affect neuron firing patterns, complicate elec-
trical activity. Inhibitory magnetic field coupling can enhance neuron firing
when the coupling intensity is small, but it can inhibit neuron firing when
the coupling intensity is strong. The neurons enter a static state when the
magnetic coupling strength reaches a critical point. As the external stim-
ulus current increases, more inhibitory magnetic field coupling strength is
required to make the neuron enter the quiescent state.

4. Conclusions

Table 3 lists the synaptic coupling and magnetic coupling models of neu-
rons. In contrast to electrical synapses, magnetic coupling has inhibitory ef-
fects. Chemical synaptic coupling is unidirectional, while magnetic coupling
is bidirectional and has no time delay. As a means of information transmis-
sion between neurons, magnetic field coupling may have similar properties
to synaptic coupling. In this paper, we explore the modulation of neural
excitation and inhibition by magnetic coupling. The electrical activity of
neurons can be promoted by increasing the magnetic coupling intensity of
the excitatory model. A high enough inhibitory magnetic coupling intensity
to make the neuron quiescent. These results have a certain significance for
further revealing the mechanism of information interaction between neurons.
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Table 3: Different ways of coupling HR neurons

Different
coupling

Equations Remarks

Excitatory
electrical
synaptic
coupling



ẋ1 = y1 − ax1
3 + bx1

2 − z1 + Iext − kρ(φ)x1 +D(x2 − x1)
ẏ1 = c− dx1

2 − y2
ż1 = r[s(x1 + 1.6)− z1]
φ̇1 = k1x1 − k2φ1

ẋ2 = y2 − ax2
3 + bx2

2 − z2 + Iext − kρ(φ)x2 +D(x1 − x2)
ẏ2 = c− dx2

2 − y2
ż2 = r[s(x2 + 1.6)− z2]
φ̇2 = k1x2 − k2φ2,

bidirectional
coupling,
electric
field

Excitatory
chemical
synaptic
coupling



ẋ1 = y1 − ax1
3 + bx1

2 − z1 + Iext − kρ(φ)x1

ẏ1 = c− dx1
2 − y2

ż1 = r[s(x1 + 1.6)− z1]
φ̇1 = k1x1 − k2φ1

ẋ2 = y2 − ax2
3 + bx2

2 − z2 + Iext − kρ(φ)x2

+gex(vse − x2)(
1

1+e(−λ(x1(t−τc)−θ)) ) vse > x2max

ẏ2 = c− dx2
2 − y2

ż2 = r[s(x2 + 1.6)− z2]
φ̇2 = k1x2 − k2φ2,

unidirectional
coupling,
time delay,

neurotransmitter

Inhibitory
chemical
synaptic
coupling



ẋ1 = y1 − ax1
3 + bx1

2 − z1 + Iext − kρ(φ)x1

ẏ1 = c− dx1
2 − y2

ż1 = r[s(x1 + 1.6)− z1]
φ̇1 = k1x1 − k2φ1

ẋ2 = y2 − ax2
3 + bx2

2 − z2 + Iext − kρ(φ)x2

+gin(vse − x2)(
1

1+e(−λ(x1(t−τc)−θ)) ) vse < x2min

ẏ2 = c− dx2
2 − y2

ż2 = r[s(x2 + 1.6)− z2]
φ̇2 = k1x2 − k2φ2,

unidirectional
coupling,
time delay,

neurotransmitter

Excitatory
magnetic

field
coupling



ẋ1 = y1 − ax1
3 + bx1

2 − z1 + Iext − kρ(φ)x1

ẏ1 = c− dx1
2 − y2

ż1 = r[s(x1 + 1.6)− z1]
φ̇1 = k1x1 − k2φ1 +Gex(φ2 − φ1)
ẋ2 = y2 − ax2

3 + bx2
2 − z2 + Iext − kρ(φ)x2

ẏ2 = c− dx2
2 − y2

ż2 = r[s(x2 + 1.6)− z2]
φ̇2 = k1x2 − k2φ2 +Gex(φ1 − φ2),

bidirectional
coupling,

magnetic field

Inhibitory
magnetic

field
coupling



ẋ1 = y1 − ax1
3 + bx1

2 − z1 + Iext − kρ(φ)x1

ẏ1 = c− dx1
2 − y2

ż1 = r[s(x1 + 1.6)− z1]
φ̇1 = k1x1 − k2φ1 −Gin(φ2 + φ1)
ẋ2 = y2 − ax2

3 + bx2
2 − z2 + Iext − kρ(φ)x2

ẏ2 = c− dx2
2 − y2

ż2 = r[s(x2 + 1.6)− z2]
φ̇2 = k1x2 − k2φ2 +Gin(φ1 + φ2),

bidirectional
coupling,
magnetic

field
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