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Dynamic network interactions among distinct
brain rhythms as a hallmark of physiologic
state and function
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Brain rhythms are associated with a range of physiologic states, and thus, studies have

traditionally focused on neuronal origin, temporal dynamics and fundamental role of indivi-

dual brain rhythms, and more recently on specific pair-wise interactions. Here, we aim to

understand integrated physiologic function as an emergent phenomenon of dynamic network

interactions among brain rhythms. We hypothesize that brain rhythms continuously coor-

dinate their activations to facilitate physiologic states and functions. We analyze healthy

subjects during sleep, and we demonstrate the presence of stable interaction patterns among

brain rhythms. Probing transient modulations in brain wave activation, we discover three

classes of interaction patterns that form an ensemble representative for each sleep stage,

indicating an association of each state with a specific network of brain-rhythm commu-

nications. The observations are universal across subjects and identify networks of brain-

rhythm interactions as a hallmark of physiologic state and function, providing new insights on

neurophysiological regulation with broad clinical implications.
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At the integrated systems level, brain dynamics are char-
acterized by distinct rhythms1 with complex spatio-
temporal behaviors over multiple levels of organization

and broad range of timescales2–4. At the microscopic level,
complex firing patterns of individual neurons and communica-
tions between neuronal populations across brain areas lead to the
emergence of distinct brain rhythms5,6 with different frequency
characteristics and spatio-temporal dynamics7,8. At the integrated
macroscopic level, brain rhythms have been associated with a
range of physiologic states9–11, various neurophysiological and
cognitive functions12–16, and pathological conditions17–20. The
traditional paradigm in brain research focuses on exploring the
role of brain rhythms and their association with specific phy-
siologic states and functions1,21, which are often considered
mutually exclusive22. For example, low-frequency delta waves
dominate during deep sleep, while high frequency alpha and beta
waves are prevalent during wakefulness1,10,22. Moreover, the
coexistence of brain rhythms corresponding to opposite physio-
logic functions (such as alpha and delta waves) has been related to
pathological conditions20. Thus, research in the field has pri-
marily focused on individual brain rhythms and specific pairwise
interactions to understand the complexity in their temporal
dynamics, neuronal origins, and spatial distribution across brain
areas7,8,17,23. This traditional approach is further motivated by
observations of (i) quasi-steady-state behavior of brain rhythms at
large timescales within each physiologic state, and (ii) gradual
change in the amplitude of individual brain rhythms with tran-
sitions from one physiologic state to another1,10,24. In this clas-
sical paradigm of defining physiologic states and functions by the
presence of dominant brain rhythms, little attention is paid to the
dynamics of nondominant rhythms. While recent studies have
identified coupling between certain brain rhythms25,26, it remains
unknown whether dominant and nondominant brain rhythms
dynamically interact, and how the network of brain-wave inter-
actions relates to physiologic states.

Here, we study physiologic function through the collective
behavior of dynamical network interactions among multiple brain
rhythms. We hypothesize that not only the specific temporal and
spatial characteristics of individual brain rhythms but also their
coordinated interactions play important role in generating and
maintaining physiologic states and functions. Further, we hypo-
thesize that the short-term modulations in the amplitude of brain
rhythms, that occur on top of their quasi-steady-state behavior
at large timescales, carry important information about their
communications.

In this study, we address the fundamental question of how
different brain rhythms continuously interact and collectively
behave as a network to facilitate distinct physiologic states and
integrated physiologic functions. We analyze temporal patterns in
the amplitude of brain waves activation, and probe for coordi-
nation and synchronous modulation in dominant and non-
dominant brain rhythms. We demonstrate the presence of robust
coupling profiles representing dynamical network interactions
among brain rhythms. We discover an entire ensemble (“alpha-
bet”) of key profiles of brain-wave interactions, which are uni-
versally observed for different brain areas and across subjects.
Moreover, we find that these interaction profiles and the related
networks change with transition from one physiologic state to
another, and thus, are a unique signature of physiologic state and
function.

Results
Synchronous modulation in the amplitudes of brain rhythms.
To identify and quantify temporal interactions between brain
rhythms, we analyze EEG spectral power in five different

physiologically relevant frequency bands (δ, θ, α, σ, and β) cor-
responding to five basic brain waves. Our analyses confirm the
classical picture that on large timescales of minutes to hours,
physiologic states are characterized by the presence of dominant
brain waves and their steady-state behavior—e.g., dominant δ
wave and minimal α wave activity in deep sleep; gradual decrease
in δ power during light sleep accompanied by increased σ and θ
power, and elevation in α rhythm during REM and arousals/wake
(Fig. 1a; Supplementary Fig. 1). However, a closer inspection at
much shorter timescales of seconds reveals that within each
physiologic state all brain waves exhibit continuous fluctuations
and complex temporal patterns around their respective steady-
state behavior. This raises the hypothesis that interactions among
brain rhythms may be encoded in continuous coordinated
modulations of their relative spectral power. Thus, to probe
dynamical interactions between different brain rhythms, we first
derive the normalized spectral power of each brain wave in 1 s
resolution, and we calculate the cross-correlation between each
pair of brain rhythms within short-time windows of 30 s
(“Methods”, Supplementary Fig. 2).

Analyzing EEG recordings from a healthy subject during 8 h of
night-time sleep27,28, we discover strong dynamical interactions
between different brain waves, and that these interactions are
mediated through complex fluctuations and coordinated mod-
ulation in the spectral power of the individual brain waves.
Specifically, we find that these interactions are characterized by
high degree of temporal cross-correlations, and that different
pairs of brain waves are characterized by different cross-
correlation patterns. For example, a strong positive cross-
correlation is consistently observed for the σ–β brain wave
interaction, indicating a remarkably synchronous behavior at
short timescales, where increase (decrease) in the amplitude of
one brain wave is accompanied by a corresponding parallel
increase (decrease) in the amplitude of the other brain wave
(Fig. 1b, c). In contrast, we find that the δ–θ interaction is
characterized by a strong anti-correlation that remains stable in
time (Fig. 1b, c), indicating that the amplitude modulation of one
brain wave is in the opposite direction with respect to the
amplitude modulation of the other brain wave. These observa-
tions demonstrate a remarkable complexity in brain rhythms
interactions, as different brain waves exhibit markedly different
patterns of cross-correlation.

Further, we ask the question whether brain-wave interactions
change from one physiologic state to another. We discover that
certain pairs of brain waves show a pronounced transition in their
cross-correlation—e.g., θ–α interaction exhibits strong positive
cross-correlation during deep sleep (Fig. 1b), and undergoes a
transition to anti-correlated interaction during wake (Fig. 1c).
Such dramatic change in the interaction pattern between brain
waves with transition from one physiologic state to another
reveals an intriguing interplay between brain-rhythm commu-
nications and physiologic states—i.e., on one hand, changes in the
mechanism of physiologic regulation impact the coordinated
activation of different brain rhythms (Fig. 1), while on the other
hand, a particular mosaic of dynamic patterns of brain-rhythm
interactions may uniquely define each physiologic state (Fig. 2).

Coupling profiles of brain-rhythm interactions. To explore the
association between brain-rhythm coordination and physiologic
states, and to test whether brain-wave interaction patterns are
consistent across subjects, we next systematically analyze a group
of 34 healthy young subjects (17 female and 17 male, see
“Methods”), and we probe for interactions between all pairs of
brain waves. We find that during a specific physiologic state (e.g.,
light sleep), each pair of brain waves exhibits a distinct pattern for
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Fig. 1 Complex temporal dynamics and distinct profiles of brain wave interactions. a Normalized spectral power of brain rhythms (Methods) at the
central C3 EEG channel from a healthy subject during sleep in 1-s time resolution (blue lines). Red lines show moving average (window 14 s; step 1 s) and
represent short-term modulation in the activation of brain rhythms. Black dashed lines represent sleep stages. Time series of spectral powers in (a) are
shown for a typical 30min segment of EEG recording when the subject undergoes a transition from deep sleep (DS) to light sleep (LS), interrupted by a
brief wake stage/arousal (W), and then to REM. Data are consistent with traditional description of different sleep stages—dominant δ power and minimal α
during DS; significant decrease in δ and increase in α power with transition from DS to LS and W; σ waves activation during LS (Supplementary Fig. 1).
Observations at smaller timescales reveal a continuous modulation in the spectral power on top of the quasi-steady-state brain-wave behavior observed at
large scales within each sleep stage, raising the hypothesis that brain waves dynamically interact with each other. We find a specific profile for each pair of
brain-wave interactions typical for each sleep stage. Cross-correlation C between the spectral power of different brain rhythms is calculated in non-
overlapping windows of 30 s during a 15-min deep-sleep episode (b) and a 15-min wake episode (c). Three classes of brain-wave interactions are observed:
stable anti-correlations with C < 0 (δ–θ, yellow symbols); stable positive correlations, C > 0 (σ–β, black symbols); transition from positive- to anti-
correlation (θ–α). Distribution of cross-correlation values for three pairs of brain-wave interactions obtained from the same subject during all DS episodes
(b) and all wake episodes (c) over the entire night. Each pair is characterized by a specific profile—values C > 0 correspond to positive correlation and C < 0
to anti-correlation. These observations reveal brain-wave interactions with specific profiles that are characteristic of physiologic states.
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the distribution of cross-correlation values C (Fig. 2). Distribution
profiles skewed to the left with peak at C < 0, as observed for the
δ–θ, δ–α, δ–σ, δ–β pairs, indicate strong anti-correlated brain-
wave interactions; in contrast, profiles skewed to the right with
peaks at C > 0, as observed for α–σ, α–β, σ–β pairs, indicate strong
positive correlations. Other pairs such as θ–α, θ–σ, θ–β exhibit
more homogeneous cross-correlation distribution patterns, indi-
cating a different mechanism of brain-wave coordination (Fig. 2).
Remarkably, the entire ensemble of brain-wave interaction pat-
terns is consistent when comparing all subjects in our database
during the same physiologic state, indicating a universal
mechanism underlying brain-rhythm interactions (Supplemen-
tary Fig. 3). These observations reveal that at short timescales,
there is a previously unrecognized complex organization among
brain rhythms which continuously coordinate and synchronize
their dynamics. For a given physiologic state, this organization
among brain rhythms is manifested by a unique ensemble of
distinct types of interaction patterns (cross-correlation profiles):
(i) pairs of brain waves that exhibit strong positive correlations
with parallel modulation in their amplitude of activation; (ii)
pairs of brain waves that are strongly anti-correlated, where one
brain wave adjusts its relative amplitude in the opposite direction
in response to changes in the dynamics of the other wave; (iii)
pairs of brain waves that, within a given physiologic state, exhibit

transient behavior in their interactions, leading to a more
homogeneous cross-correlation distribution (Fig. 2).

These distinct types of reciprocal brain-wave relations are
universal across subjects and indicate that interactions between
different pairs of brain rhythms play different roles in physiologic
regulation. Our findings demonstrate the need to extend the
traditional framework of understanding physiologic states
through the prism of distinct or dominant brain rhythms and
their homeostatic steady-state dynamics at large timescales10,24.
In addition to this classical picture, we find that for a given
physiologic state, there is a unique “alphabet” of brain-rhythm
communications (Fig. 2) embedded in transient brain wave
modulations at short timescales.

Alphabet of coupling profiles as hallmark of sleep stages. Next,
we investigate the association between the alphabet of brain-wave
interactions and different physiologic states. For each pair of
brain rhythms, we track how the cross-correlation distribution
profile changes with transition from one sleep stage to another.
Comparing profiles of brain-wave interactions for different phy-
siologic states, we discover that each state is characterized by a
specific ensemble of profiles, as shown in Fig. 3 by panels along
the horizontal direction. These state-dependent ensembles of
profiles are robust as they are consistently observed in all indi-
vidual subjects (Supplementary Fig. 3 and statistical tests in
“Methods”) during the same sleep stage, thus reflecting a fun-
damental feature of physiologic states. We also investigate how
the ensemble of interaction profiles reorganizes with transitions
across sleep stages. We find that with transition from one sleep
stage to another (vertical direction in Fig. 3), the cross-correlation
profile for each pair of brain waves changes, leading to a complex
reorganization of the entire alphabet of brain-wave interactions.
Based on how the shape of each interaction profile evolves across
sleep stages, we identify three major classes of brain-wave inter-
actions: (i) a class of brain rhythms that exhibit stable negative
cross-correlations (e.g., δ–θ, δ–σ, δ–α, δ–β); (ii) brain rhythms
that interact through stable positive cross-correlations (e.g., α–σ,
α–β, σ–β); and (iii) a class of brain-wave interactions that are
sleep-stage dependent and undergo a pronounced transition from
positive to negative cross-correlation with transition from DS to
LS, REM, and wake (e.g., θ–α, θ–σ, θ–β).

Further, we track the evolution of the interaction profiles
within each class of brain rhythm communications, and we
identify distinct subsets: (i) in the class of positively correlated
pairs of brain waves, α–σ and α–β interactions exhibit gradual
reduction in the degree of cross-correlations with transition from
DS to LS, REM, and wake, as indicated by the shift of the
distribution profiles from C > 0 to C < 0 values. In contrast, σ–β
interactions exhibit gradual increase in positive cross-correlations
(Fig. 3); (ii) in the class of anti-correlated pairs of brain waves, δ–
θ interactions exhibit gradual decrease in anti-correlations (fatter
tails with C > 0 for REM and wake, Fig. 3), whereas δ–α
interactions exhibit pronounced anti-correlation that remains
stable for all sleep stages. Notably, these interaction profiles result
from short-scale synchronous modulation in brain-wave ampli-
tudes, and are masked, due to shifts in global EEG power, when
absolute spectral power (instead of relative power) is considered
for each frequency band (“Methods”, Supplementary Fig. 4). The
observed classes and subsets of brain wave interactions indicate a
hierarchical reorganization of the entire ensemble of interaction
profiles with transition across physiologic states. These findings
indicate a direct association between patterns of coordination
among distinct brain rhythms at short timescales and integrative
physiologic function at longer timescales.
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Fig. 2 Alphabet of brain-wave interactions as a signature of physiologic
state. Distributions of cross-correlation for different pairs of brain waves.
Distributions are obtained from the cross-correlation time series values for
each pair of brain-wave interactions (Fig. 1) pooled from all subjects during
all light sleep (LS) episodes over the entire night-time sleep period. Since
cross-correlation values are obtained for consecutive 30-s segments of the
recordings (“Methods”), each distribution represents the number of cross-
correlated epochs (y-axis) for a given cross-correlation value (x-axis), as
shown in the panels below the diagonal line. Different colors correspond to
different pairs of cross-correlated brain waves. Distributions rescaled to
their respective maximum value are shown in the panels above the diagonal
line, where solid black line in each panel represents a moving average of the
rescaled histogram (smoothed profile). Profiles skewed to the left with peak
at C < 0 indicate anti-correlated pairs of brain waves, while profiles skewed
to the right with peaks at C > 0 indicate positively correlated brain-wave
interactions. Each pair of brain-wave interactions is characterized by a
distinct profile of the rescaled histogram, indicating that besides the quasi-
steady-state behavior of brain rhythms observed at large timescales during
a given physiologic state (Supplementary Fig. 1), there are complex
dynamics of continuous communications among brain rhythms that occur
at shorter timescales. The ensemble of these profiles forms a specific
“alphabet” representing brain-wave interactions.
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Degree of coupling strength in brain-rhythms interaction. To
characterize the different classes of brain-wave interaction profiles
as well as the hierarchical reorganization of the entire ensemble of
profiles across sleep stages, we introduce a measure to quantify
the degree of cross-correlation between all pairs of brain rhythms.
The measure is defined as the fraction of time when significant
positive or negative cross-correlation values are observed during
all episodes of a specific sleep stage throughout the night (Fig. 4).
This measure is closely associated with the occurrence of short-
scale transient physiologic events within a physiologic state that
can not be identified at longer timescales (Supplementary Figs. 1
and 2). Since each brain-wave interaction profile in Fig. 3 is
represented by the distribution of cross-correlation values C,
where cross-correlation values are obtained in non-overlapping
30-s windows, calculating the number of C values that are above a
significance threshold quantifies the fraction of time when sig-
nificant cross-correlation between two brain waves is observed.
We choose a threshold of C0= 0.5 (based on surrogate test;
“Methods” and Supplementary Fig. 6) to define significant posi-
tive cross-correlation values C > 0.5, and significant anti-
correlation values C <−0.5 (for statistical tests, see “Methods”
and Supplementary Fig. 7). In each distribution profile, the degree
of positive correlation is represented by the area under the profile
curve with C > 0.5, whereas the degree of anti-correlation corre-
sponds to the area under the profile with C <−0.5. Thus, we
characterize each interaction profile by the areas corresponding to
the two extreme parts of the cross-correlation distribution
(Fig. 4a), where the height of each positive or negative bar
represents the fraction of the recording during a specific phy-
siologic state with significant positive correlation (C > 0.5) or with
significant anti-correlation (C <−0.5).

This approach allows to quantify the three classes of brain-
wave interactions based on differences in their respective

profiles (Fig. 4): high degree of positive cross-correlations
(shaded positive bars); high degree of anti-correlations (yellow
negative bars); and state-dependent interactions that change
from positive to anti-correlation with transitions across sleep
stages. This measure and graphic representation of the strength
of interactions among brain rhythms is used in Fig. 4 to
demonstrate different classes of brain wave interactions and to
quantify how these interactions change with sleep stages.
Moreover, we find a clear sleep-stage stratification pattern
imprinted on the different classes of the brain wave interactions
(Fig. 4), which is robust in respect to the cross-correlation
threshold C0 (“Methods”, Supplementary Fig. 8). This finding
indicates that brain rhythms collectively adjust and coordinate
their activation in response to changes in physiologic regulation
during different sleep stages. Further, the same sleep-stage
stratification pattern of brain-wave interaction is consistently
observed for each individual subject as well as for the group
average (Fig. 4), indicating a universal mechanism underlying
communications among brain rhythms. The consistency in
brain-wave coupling and universality of sleep-stage stratifica-
tion among subjects is supported by inferential statistics29,30 for
the results expected from a larger database (“Methods”,
Supplementary Figs. 12 and 13).

We also test whether the reported classes of brain-wave
interactions (Fig. 3) and the associated sleep-stage stratification
patterns (Fig. 4) are general or depend on cortical location. To
that end, we analyze the data derived from different EEG
channels (Fp1, Fp2, C3, C4, O1, O2) representing different
cortical areas. We find a remarkable consistency in the classes of
brain-wave interactions as well as in their sleep-stage stratification
when comparing frontal, central and occipital areas within each
hemisphere and between the left and right hemisphere (Supple-
mentary Fig. 9).

Fig. 3 Transitions in brain-wave interactions across physiologic states. Profiles of cross-correlation distributions for each pair of brain waves during
different physiologic states (sleep stages) obtained by pooling data from all subjects. Colors correspond to different pairs of brain waves, as shown in Fig. 2.
To better visualize the different profiles of the cross-correlation distributions, all histograms are rescaled so that the peak value is one. Solid black line in
each panel represents a moving average of the rescaled histogram (smoothed profile). Each physiologic state (horizontal row) is characterized by a specific
set of profiles representing the alphabet of interactions for different pairs of brain waves. Further, with transition from one physiologic state to another
(vertical column), the cross-correlation profile for each pair of brain waves changes, leading to a reorganization of the ensemble of brain-wave interactions.
Three classes of brain-wave interactions are observed with transitions across physiologic states: (i) a class of pronounced anti-correlations as represented
by distribution profiles with a peak at cross-correlation C < 0 (e.g., δ–θ, δ–σ, δ–α, δ–β); (ii) pronounced positive correlations as represented by distribution
profiles with a peak at cross-correlation C > 0 (e.g., α–σ, α–β, σ–β); (iii) pairs of brain waves that are characterized by a transition from positive- to anti-
correlated interactions (e.g., θ–α, θ–σ, θ–β). These observations indicate a complex hierarchical organization in the way brain rhythms communicate with
each other to facilitate distinct physiologic states and functions, and that a specific set of brain wave interactions (alphabet of profiles) underlies each
physiologic state.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0878-4 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:197 | https://doi.org/10.1038/s42003-020-0878-4 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


To demonstrate validity of the results and the relation to
underlying physiology, we performed additional tests. To confirm
the physiological origin of the observed brain-wave interaction
patterns (Figs. 3 and 4), we performed a surrogate test where we
analyzed pairs of brain-wave spectral power signals taken from
different subjects during the same sleep stage. While spectral
power signals from real data exhibit short-term amplitude
modulations on top of their quasi-steady-state spectral power
level related to the specific sleep stage, these amplitude
modulations would not be synchronized for different subjects,
and thus, would not result in consistent brain-wave interaction
profiles. Indeed, our analyses of such surrogate pairs of brain
waves, where the original characteristics of the individual signals
are preserved but their amplitude modulations are not synchro-
nized, yield uniform distributions of the Pearson cross-correlation
coefficients for all pairs of brain waves and all sleep stages
(Supplementary Fig. 10a) with no differentiation in the degree of

cross-correlation among the pairs of brain waves and no sleep-
stage stratification (Supplementary Fig. 10b). This test confirms
that the reported classes of brain wave interaction profiles and
their stratification across sleep stages represent real physiologic
interactions revealed by our method. To further test the
physiological significance of the brain-wave interaction profiles,
we performed Fourier phase randomization of the EEG signal
which preserves the spectral power in the different frequency
bands corresponding to the brain rhythms but eliminates the fine
temporal structure in their instantaneous amplitudes. While
preserving the ratio between the average spectral power of the
different brain waves embedded in the EEG, the procedure
eliminates the synchronous modulations of the different fre-
quency bands that underlie brain waves coupling. The results of
this surrogate test show very different interaction profiles
(Supplementary Figs. 11a and 11b) compared with real data
(Figs. 3 and 4). While the class of anti-correlated brain waves is

Fig. 4 Robust sleep-stage stratification in the degree of cross-correlation for different pairs of brain rhythms. a Degree of cross-correlation as a
measure of brain-rhythm interactions calculated as fraction of total time during a particular physiologic state when significant cross-correlations are
observed (significance threshold |C|= 0.5; Supplementary Fig. 6). (left panel) The degree of positive cross-correlation between δ and θ waves during LS
corresponds to the ratio of the distribution area for C > 0.5 and the total area under the distribution curve; the degree of δ–θ anti-correlation during LS
equals the ratio of the distribution area for C <−0.5 out of the total distribution area under the red line. The degree of positive correlations for pairs of
brain-wave interactions is plotted as positive bars shaded in same color as the corresponding physiologic state, whereas the degree of anti-correlation is
represented by negative yellow bars. Bar charts in (b, c) quantify the difference between profiles of the cross-correlation distributions shown in Fig. 3.
Three major classes of brain-wave interactions are observed for all sleep stages: (i) strongly anti-correlated (negative bars); (ii) strongly positively
correlated (positive bars); (iii) pairs of brain waves that switch from positively- to anti-correlated interactions with transitions across sleep stages. Within
these classes, certain pairs of brain waves exhibit different trends in the nature of their interactions: in the class of positively correlated pairs, α–σ and α–β
interactions exhibit a reduction in positive correlations (decreasing height of positive bars) with transition from DS to LS, REM, and wake, while σ–β
interactions exhibit gradual increase in positive correlations (Fig. 3). In the class of anti-correlated pairs, δ–θ interactions exhibit decrease in anti-
correlations, whereas δ–α interactions exhibit stable anti-correlation for all sleep stages. This stratification pattern in brain-wave interactions is consistently
observed for individual subjects (b), as well as in the group average (c). Error bars represent group standard deviation. This robust sleep-stage stratification
pattern reveals a universal organization in brain-wave interactions.
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still present for the surrogate data, the shapes of the specific
profiles for each pair of brain waves are different compared with
real data. Further, the brain-wave interaction profiles in the other
three classes (with mixed, weak positive, and strong positive
correlations) are dramatically altered. This demonstrates that the
reported distinct functional forms of brain-wave coupling
represent physiological information related to (i) the relative
difference in the total spectral power of each brain wave at large
time scale during a given sleep stage, as well as to (ii) the
synchronous modulation of brain-wave amplitudes at short
timescales.

Because we probe brain-rhythm interactions through short-
time scale dynamical patterns in the continuous fluctuations of
brain-wave activation, our approach allows to identify and track
transient events that occur within each physiologic state. When a
particular transient event significantly modulates one brain
rhythm (e.g., δ-wave) causing a sudden change in its relative
power, other brain rhythms (e.g., θ, α, σ, β) respond accordingly
with reciprocal modulation in their spectral power, yet remaining
fairly stable with respect to each other. On one hand, such
transient events would be reflected by the emergence of strong
anti-correlation between δ and all remaining brain rhythms. On
the other hand, such events would be also accompanied by strong
positive correlations among the remaining brain rhythms. Thus,
the measure we introduce to quantify the degree of cross-
correlation between brain rhythms (Fig. 4) represents the
frequency of occurrence of such transient events, and each pair
of brain waves is simultaneously represented by the fraction of
time when positive and negative cross-correlation is observed
(shaded and yellow bars in Fig. 4).

Networks of brain-rhythm interactions across sleep stages. To
probe the collective behavior of brain rhythms in relation to
physiologic states, we construct networks of positive and anti-
correlated interactions, and we track their evolution across sleep
stages (Fig. 5). This network approach helps to visualize and
dissect brain-wave interactions where positive- and anti-
correlated behaviors coexist, and provides a first demonstration
of how brain rhythms coordinate collectively as a network to
generate distinct physiologic states. During DS, we observe a
pronounced network cluster of anti-correlated interactions
between the δ wave and all other brain waves (Fig. 5). We also
identify a coexisting complementary network during DS com-
prised of only positively correlated interactions between all brain
waves except δ (Fig. 5). With transition from DS to LS, REM, and
wake, the links strength in the anti-correlated cluster between δ
and all other brain waves decreases, while new positively corre-
lated links emerge indicating a complex reorganization among
brain rhythms across physiologic states. We note that links in the
positively correlated networks represent parallel coordination of
brain waves activation, whereas links in the anti-correlated net-
works correspond to brain wave interactions of reciprocal and
complimentary nature (opposite direction of modulation). Spe-
cifically, the δ–α interaction is always characterized by strong
anti-correlation during all sleep stages, and there is no δ–α link in
the positively correlated networks (Fig. 5). This observation is
consistent with the traditional understanding of δ and α waves as
the predominant brain rhythms for two opposite physiologic
states, i.e., sleep vs. wake. However, the classical description of
these physiologic states does not address the nature of δ–α
interaction. Our analyses reveal complex dynamics of reciprocal
and competing nature in the coupling between δ and α waves,
which transcends all physiologic states. In contrast to δ–α
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Fig. 5 Network communications and topological clustering of brain
rhythms. Network representation of coordinated interactions among
characteristic brain waves. Network nodes represent brain waves (EEG
frequency bands), and network links indicate the degree of cross-
correlations for each pair of brain waves (line thickness and darkness
correspond linearly to link strength). Two types of networks are shown:
left column, where links strength reflects the fraction of time when
significant positive correlation (with C > 0.5) is found between a given
pair of brain waves (as shown by positive bars in Fig. 4); right column,
where links strength corresponds to the fraction of time when significant
anti-correlation (with C <−0.5) is observed (as also shown by negative
bars in Fig. 4). During DS, there is a pronounced network cluster of anti-
correlated interactions between the δ rhythm and all other brain waves,
as well as a complementary cluster of only positively correlated
interactions between all other brain waves. These networks of
coordinated interactions among brain waves evolve with transitions from
DS to LS, REM, and wake—the links strength in the anti-correlated cluster
between δ and all other brain waves decrease, while new positively
correlated links emerge. Notably, the δ–α interaction is always
characterized by strong anti-correlations during all sleep stages (no δ–α
link in the positively correlated networks, left column). In contrast, links
associated with the θ wave (θ–α, θ–σ, and θ–β) that are positively
correlated during deep sleep become increasingly anti-correlated during
light sleep and REM. Remarkably, the coexistence of both positively- and
anti-correlated networks of brain waves interactions within each
physiologic state indicates a transient on/off nature of brain-wave
communications, where links of different nature can emerge during
different periods of time within the same physiologic state. The specific
topology and clustering of brain-wave networks during different sleep
stages demonstrate a direct association between brain-wave
communications and physiologic state and function.
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interactions, links associated with the θ wave (θ–α, θ–σ, and θ–β)
that are positively correlated during DS become increasingly anti-
correlated during LS and REM, indicating a very different role of
θ–wave interactions compared with α- and δ-waves. Further,
since network links represent the fraction of time when a certain
type of cross-correlation (positive or negative) is observed, the
coexistence of both positively- and anti-correlated networks of
brain-wave interactions within each physiologic state indicates a
very transient on/off nature of brain-rhythms communications,
where links of different nature can emerge during different per-
iods of time within the same physiologic state.

The traditional paradigm in brain research focuses on
exploring the temporal dynamics and role of individual brain
rhythms, and their association with specific physiologic states and
functions1,10. It is motivated by observations of quasi-steady-state
behavior of brain rhythms at large timescales within a given
physiologic state (e.g., sleep or wake, sleep stages)24,31, and
changes in the amplitude (i.e., spectral power) of individual brain
rhythms, their synchrony and coherence across cortical areas with
transition from one physiologic state to another32–35. Our study
aims to address the question of how dominant and nondominant
brain rhythms dynamically interact. We demonstrate that
synchronous short-term modulations in the amplitude of brain
rhythms that occur on top of their quasi-steady-state behavior at
large timescales, carry important information about the coupling
among brain rhythms that are essential characteristics of
physiologic state. The presented here approach can detect
higher-order interactions among both dominant and nondomi-
nant brain rhythms embedded in their fine temporal structure at
small timescales (Figs. 3 and 4), and can quantify the change in
brain rhythms network communications with transition across
distinct sleep stages (Fig. 5). The uncovered coupling forms and
network coordination among brain rhythms provide new insights
on intrinsic physiologic interactions in the brain.

Discussion
While neuroscience research has traditionally focused on the
firing rates of neurons at the micro scale and the brain areas
involved in different tasks at the macroscale, there has been little
progress in understanding the computational principles that
organize and synthesize lower level signals to produce the effects
that we see at larger scales. A number of studies on brain
dynamics at the microscopic level have focused on local field
potentials36–40 and related interactions between neuronal oscil-
lations41 often with emphasis on modeling approaches. At the
macroscopic integrated system level, studies have traditionally
considered coherence of the same cortical rhythm across brain
areas42 with limited investigations on synchronous occurrence of
specific pairs of cortical rhythms26,43–47, mainly in the context of
memory and cognition48–50. We present a systematic empirical
study of network interactions among all physiologically relevant
cortical rhythms, and discover distinct classes of coupling forms
that coexist during a given physiologic state and reorganize with
transitions across physiologic states.

We demonstrate the presence of dynamic networks of inter-
actions among brain rhythms. We show that physiologic states
can not be fully described by focusing only on individual brain
rhythms and on certain pairwise interactions, and that con-
tinuous coordination among all brain rhythms as a network
underlies physiologic function. Our analyses indicate that the
micro-architecture of brain-wave modulation at short timescales
(traditionally regarded as noisy fluctuations) carries important
information about the nature of brain rhythm interactions. We
discover that the interaction between each pair of brain rhythms
is characterized by a specific profile, and that collectively, these

interactions are represented by an ensemble of profiles (a unique
alphabet) that is consistent for all healthy subjects at a given
physiologic state. This ensemble of profiles captures the dynamics
of reciprocal modulation between different brain rhythms, and
demonstrates a transient nature of brain-wave interactions within
a given physiologic state. Moreover, we find that brain-wave
interaction patterns fall into three distinct classes and change with
transition from one physiologic state to another, leading to a
hierarchical reorganization of the entire ensemble of interaction
profiles. This demonstrates a strong association between the
network of coordinated brain-rhythm communications and
physiologic states.

In the context of sleep, our findings show that in addition to
the traditional framework of defining sleep stages and sleep dis-
orders through markers of dominant cortical rhythms1,10,24,31,
the specific functional form of coupling and network interactions
among both dominant and nondominant cortical rhythms are an
essential hallmark of sleep regulation. The reported here distinct
classes of brain-wave interaction profiles redefine sleep through a
previously unrecognized alphabet of cortical rhythms interac-
tions, and open new perspectives on the regulatory mechanisms
of brain dynamics during sleep, with implications for novel bio-
markers of sleep and neurological disorders51,52. While our
findings relate to dynamic network interactions among rhythms
derived from the same cortical location (EEG channel), extension
of this work will lead to investigations of amplitude correlations
and phase relationships between brain waves across cortical
locations. The discovery that pairs of brain rhythms exhibit very
different functional forms of coupling (an entire alphabet of
interaction profiles), which coexist during a given physiologic
state and change with transition across states, indicates a pre-
viously unrecognized high complexity in the temporal organiza-
tion of cortical rhythms. Such integrated picture of the
interactions among all brain waves as a network is essential to
guide future research on modeling the complex interactions of
neurons and neuronal populations, and the mechanisms that lead
to diverse cortical rhythms with synchronous modulations and
different forms of coupling. Our findings will be instrumental in
future works using models to bridge spatial scales, from the
oscillatory activity at the neuronal level during specific physio-
logical states to functional coupling of integrated brain rhythms at
the system level.

Our findings demonstrate that networks of brain-rhythms
interactions have a previously unrecognized role as a signature of
physiologic state. Currently, there is no mechanistic framework
across spatial length scales connecting functional relations
between single cell activity at the microscopic level with emerging
coupling of integrated brain waves at the macroscopic system
level. Our finding of coexisting forms of coupling among cortical
rhythms may motivate single cell studies53 to probe the origin
and mechanisms leading to brain-wave coordination, and open
new research directions at the microscopic level to explore the
role of heterogeneous neuronal populations in generating distinct
classes of brain wave network interactions and associated phy-
siologic functions54,55.

In the broader context of complex systems with self-
organization and in the framework of Network Physiology56–58,
our findings raise new questions related to how multi-component
coordination among different dynamical processes generates
coherent emergent behavior at the integrated level59–62. In
addition, the uncovered robust alphabet of brain-wave interaction
patterns has the potential for broad applications, as one can
extend these investigations to other physiologic states (e.g.,
maturation and age, rest and excise, circadian and ultradian
rhythms, stress and vigilance, etc), as well as to various patho-
logical perturbations, psychological, and sleep disorders, where
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comparative quantification of network maps representative of
brain-rhythm communications can lead to new biomarkers of
diagnosis and prognosis.

Methods
Subjects. Continuous synchronized multi-channel EEG recordings are obtained
from 34 healthy young subjects (17 female, 17 male, age between 20 and 40 yrs,
average age 29 yrs) during night-time sleep (average record duration 7.6 h) in a
sleep laboratory27. We utilize pre-existing de-identified multi-channel EEG
recordings and sleep-stage annotations from the EU SIESTA database. All parti-
cipants provided written informed consent. Data use and protocol were approved
by the Boston University Charles River Campus Institutional Review Board (IRB
protocol number 3380X). Data can be obtained upon request through the advisory
board of the SIESTA Group (www.thesiestagroup.com).

For each subject, the recording consists of an electroencephalogram (EEG)
using six leads with sampling frequency of 256 Hz. We focus on physiological
dynamics during sleep as sleep stages are well-defined physiological states, and
external influences due to physical activity or sensory inputs are reduced. Sleep
stages are scored in 30 s epochs by sleep lab technicians based on standard
criteria24,28. Four basic sleep stages are identified: deep sleep (DS), light sleep (LS),
rapid eye movement sleep (REM), and wake/arousals (W). Detailed sleep-stage
statistics for all subjects are provided in Table 1 in Supplementary Material. A sleep
episode is defined as one continuous sleep-stage duration that spans multiple 30 s
epochs. While there is some intersubject variability, the sleep-stage statistics are
similar across all subjects as indicated by the small standard derivations listed in
Table 1 in Supplementary Material. This intersubject variability is typical and does
not affect the outcome of our analyses and the reported findings—the brain-wave
interaction profiles obtained for individual subjects are consistent with the group
average profiles for each pair of brain waves and all sleep stages as also shown by
the results of Wilcoxon Signed-rank tests (see “Methods” subsection Distribution
profiles of cross-correlation values).

Brain rhythms relative spectral power. To probe the dynamical interaction
among brain waves that are characterized by different EEG frequencies, we apply
Fourier band-pass filter to EEG recordings from all six channels. The spectral
power in five physiologically relevant frequency bands is extracted from raw EEG
signals in consecutive moving windows of 2 s with 1 s overlap: δ-wave (0.5–3.5 Hz),
θ-wave (4–7.5 Hz), α-wave (8–11.5 Hz), σ-wave (12–15.5 Hz), and β-wave (16–19.5
Hz). These are physiologically relevant frequency bands that are widely used in
human EEG studies and sleep research. Previous studies have shown that these
frequency bands relate to specific physiologic functions (sleep, wake, sleep-stage
identification, memory consolidation, attention, arousal activation, etc.), and
change under pathologic perturbations10,27,51. We note that we purposefully cre-
ated frequency gaps of 0.5 Hz to better separate the bands. However, our results do
not change if we take the original definitions of the bands: δ (0–4 Hz), θ (4–8 Hz), α
(8–12 Hz), σ (12–16 Hz), β (16–20 Hz).

To identify the dynamical evolution and synchronous amplitude modulation of
brain rhythms at short timescales, we calculate the relative spectral power in each
frequency band with a 1 s resolution. The normalized relative spectral power is
obtained as the ratio between the spectral power in the specific frequency band and
the total spectral power of all five bands (blue solid lines in Fig. 1a and in
Supplementary Fig. 1). Thus, the obtained normalized spectral power represents
the relative contribution of each brain rhythm to the total brain activity and allows
to quantify reciprocal modulations in the amplitude of different brain waves. To
capture the quasi-steady-state behavior of different brain rhythms during different
sleep stages, and trends with transitions across sleep stages, we perform a
smoothing procedure to the relative spectral power with 14 s moving window and
step of 1 s (red solid lines in Fig. 1a and in Supplementary Fig. 1).

The aim of our study is to test the hypothesis of brain-wave interactions
mediated through synchronous amplitude modulation of their spectral power
bands within the quasi-steady-state behavior of the total EEG power during each
30 s epoch of a given sleep stage. For this, we need to capture the dynamics within
30 s epochs, thus our choice of a smoothing window of approximately half of the
30 s epoch. We note that a too short window of just a few data points does not have
the desired smoothing effect to reveal synchronous modulation in the spectral
power time series of different brain rhythms at the 1 s resolution of our spectral
power analysis. On the other hand, a smoothing window that is too long (longer
than half the sleep-stage scoring epoch size of 30 s) will carry information from
previous and following sleep epochs, and thus, influences the information derived
from our analysis for the considered epoch. Repeating the analysis for moving
average window sizes of 10 s and 20 s, we obtained consistent results for all brain-
wave interaction profiles (Supplementary Fig. 5).

Since the EEG amplitude heavily impacts the oscillations across all frequency
bands, applying our analyses to the absolute power of each frequency band results
in strong positive correlations for almost all 30 s windows throughout the entire
data set for all pairs of brain waves, and does not lead to differentiation of brain-
wave interactions between sleep stages. The reason is that modulations in EEG
amplitude (due to intrinsic physiologic regulation or external factors such as
movement artifacts and changes in scalp connectivity) lead to global change in the

entire power spectrum, and thus to positive cross-correlations among all frequency
bands. Repeating the analyses for the absolute spectral power bands we find strong
positive cross-correlations with similar profiles for all pairs of brain rhythms across
all sleep stages (Supplementary Fig. 4). Considering normalized spectral power for
the different brain waves reduces these confounding factors preserving the relative
contribution of each brain wave to the total spectral power, and reveals
physiologically relevant interaction profiles that change in relation to the different
contributions of distinct brain rhythms during different physiologic states (sleep
stages) (Fig. 3).

Cross-correlations between brain rhythms. To probe the dynamical interaction
between different brain waves (EEG frequency bands) embedded in short time
scale continuous brain-wave fluctuations, we cross-correlate the relative spectral
power for each pair of brain waves. Two signals of relative spectral power, {x} and
{y}, each of length N, are divided into segments of length L and moving step of M.
We choose L= 30 s andM= 30 s, which corresponds to the 30-s time resolution of
conventional sleep-stage-scoring epochs. Thus, NL= [(N− L)/M]+ 1 is the
number of segments where we calculate cross-correlations. Next, we calculate the
bivariate equal-time Pearson’s cross-correlation of {x} and {y} within each segment
ν= 1,…,NL as defined by Cν

xyð0Þ ¼ 1
L

PL
i¼1 x

ν
iþðν�1ÞMy

ν
iþðν�1ÞM . The cross-

correlation values range from C=−1 (strongest negative cross-correlation) to C=
1 (strongest positive cross-correlation). Note, that for two uncorrelated signals C=
0. All five brain waves are tested pairwise, leading to ten cross-correlation time
series, as shown in Supplementary Fig. 2. This procedure results in an estimation of
NL cross-correlation values C for each pair of brain waves. To test the robustness of
the the cross-correlation analysis for different timescales, we repeat our procedure
for two additional segment lengths L= 60 and L= 120, and we obtain very similar
results. To quantify the dynamics of synchronous amplitude modulation for a
specific pair of brain waves during a particular physiologic state, we calculate the
distribution of the cross-correlation time series values obtained for all episodes of a
given sleep stage over the entire night recording, pooled from all subjects.

Distribution profiles of cross-correlation values. To quantify coordinated
modulation of brain waves, we obtain the distribution of the cross-correlation
values C for each pair of brain waves during a given physiologic state. Distributions
of cross-correlation values for each sleep stage are obtained in the range from C=
−1 to C= 1 using linear bins with size 0.05. To outline the distribution profile, a 4-
point moving average is performed (black solid lines in Fig. 1b, c). To confirm that
the distribution profile of cross-correlation between each pair of brain waves is
robust, we plot the distribution profiles for all subjects together (Supplementary
Fig. 3). Further, we pooled together the cross-correlation distribution values of
individual subjects to quantify the group average behavior for all pairs of brain
waves at a given physiologic state (Fig. 2) and across physiologic states (Fig. 3).

Statistics and reproducibility. The statistical significance of our results for the
brain-wave cross-correlation profiles (Fig. 3) is confirmed by the distribution of
p-values obtained for the Pearson cross-correlation coefficients for all 30 s windows
from all subjects. P-values pooled from all subjects after shuffling the spectral
power signals in each frequency bands follow a uniform distribution with >96% of
the p-values above p= 0.05, thus confirming the null hypothesis that the analyzed
data are random samples (Supplementary Fig. 7a). In contrast, our analysis of real
data shows that >80% of the Pearson cross-correlation values pooled from all 30 s
segments in all subjects are statistically significant with p-values < 0.05 (Supple-
mentary Fig. 7b).

To demonstrate the robustness and consistency of the reported brain-wave
interaction profiles across subjects shown in Supplementary Fig. 3, we performed
Wilcoxon Signed-rank tests comparing the distribution curves of individual
subjects with the group averaged profile. Our null hypothesis (H= 0, p ≥ 0.05) is
that two distribution curves are not different from each other. The test hypothesis
(H= 1, p < 0.05) is that the two curves are different in their functional form. The
test results show that the majority of the individual subjects profiles (>94%) are
consistent (p ≥ 0.05) with the group averaged profile. This indicates that on average
not more than two subjects have distribution curves that deviate from the group
averaged brain-wave interaction profile for any given pair of brain waves in any
sleep stage. Such consistency of the Wilcoxon test results for individual subjects in
our database that are recorded in different sleep laboratories shows that inter-
scorer variability for sleep staging does not affect our findings.

Under identical procedure of data analysis, we find a diversity in the functional
forms of coupling for different pairs of brain waves and four distinct classes of
interaction profiles (Fig. 3). This indicates differences in the fine temporal
characteristics of spectral power and in the synchronous amplitude modulations
for the brain rhythms. An artifact of the methodology of analysis would
alternatively show no differences in the coupling forms for the different pairs of
brain waves (for example, see Supplementary Fig. 4).

Degree of cross-correlation between brain rhythms. To further characterize the
communication between a given pair of brain rhythms, we define the degree of
cross-correlation as the number of episodes with significant cross-correlation
values between the two brain waves. We choose a threshold value of C0= 0.5, and
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significant positive cross-correlation is defined as C > 0.5, whereas significant anti-
correlation corresponds to C <−0.5. For a given sleep stage, the degree of cross-
correlation is calculated as the fraction of time when significant positive or negative
cross-correlation is observed during all episodes of the sleep stage. Thus, for a
given pair of brain rhythms the degree of positive correlation is represented by
the area under the cross-correlation distribution curve with C > 0.5, whereas the
degree of anti-correlation corresponds to the area under the distribution curve with
C <−0.5 (Fig. 4). Choosing the cross-correlation threshold value of C0= 0.5 as
significance level of coupling among brain rhythms is based on a surrogate analysis,
where normalized and smoothed spectral power signals for the frequency bands
corresponding to the different brain rhythms are shuffled before performing
Pearson’s cross-correlation analysis in 30-s windows. Interaction profiles repre-
senting distributions of cross-correlation values obtained from these surrogate data
are centered around C= 0 and decay rapidly to zero at approximately C= ±0.5
(Supplementary Fig. 6a). This surrogate test shows that a degree of positive cross-
correlation with C > 0.5 and anti-correlation with C <−0.5 does not result from a
random process but represents relevant physiological interactions. As expected, the
highest probability for cross-correlation values obtained from randomly shuffled
surrogate data is at C ≈ 0, and correspondingly the group average degree of cross-
correlation for each surrogate pair of brain rhythms is close to zero (Supplementary
Fig. 6b).

We obtain the degree of cross-correlation between all brain rhythms for a
typical subject (Fig. 4a) and for the entire group (Fig. 4b). The height of colored
(shaded) bars in the upper half of the panels in Fig. 4 represent the degree of
positive cross-correlation, while the yellow bars in the lower half of the panels
corresponds to the degree of negative cross-correlation. The surrogate test on
shuffled data (Supplementary Figs. 6 and 7) confirms the validity of our choice of
C0= 0.5 as the significance threshold for the degree of cross-correlation among
brain rhythms. To further confirm the stability of our results in respect to the
choice of the threshold C0—namely, the robustness of our finding of specific classes
of interaction among the brain waves and pronounced sleep-stage dependence of
these interactions (Figs. 3–5) we repeat the analysis for different cross-correlation
threshold values: C0= 0.3, 0.4, 0.6, 0.7. We find that the degree of cross-correlation
associated with each pair of brain rhythms does not change significantly for these
threshold values of C0, and exhibits the same stratification pattern when comparing
different classes of interactions for a given sleep stage and across sleep stages
(Supplementary Fig. 8).

We repeat the calculation of the degree of cross-correlation for all physiologic
states as well as for all EEG signals derived from different EEG channels (Fp1, Fp2,
C3, C4, O1, O2) and obtain consistent results across cortical areas (Supplementary
Fig. 9).

We performed inferential statistics29,30 based on the empirical results of the
34 subjects in our database. Inferential statistics address the question on what is the
confidence level for the degree of brain wave cross-correlations provided additional
subjects are randomly drawn from the same population and analyzed. Inferential
statistics present a projection of the boundaries of expected results form the
analysis of new subjects based on the limited statistics of the 34 healthy subjects
across four sleep stages considered in our database. From the values of the degree
of positive and negative cross-correlations from all individual subjects (Fig. 4b;
Supplementary Fig. 3), the group mean of the degree of positive and negative cross-
correlations (Fig. 4c; Supplementary Fig. 9) and their covariance matrix elements,
we obtain the 95% confidence level using bivariant Gaussian distribution. The
confidence area is marked as shaded ellipse for each pair of brain waves and all
sleep stages in the panels of Supplementary Figs. 12 and 13. The inferential
statistics show high consistency for expected results for new subjects drawn from
the same population and physiological conditions with the findings obtained from
the current database of 34 subjects—with more than 95% probability, data points
representing the degree of coupling between cortical rhythms from additional
subjects would fall within the area marked by the ellipse in each panel of
Supplementary Figs. 12 and 13.

Dynamic network interactions among brain rhythms. The degree of cross-
correlation provides a simple way to characterize the alphabet of brain wave
interactions as it reduces each distribution profile to two values, while preserving
the important features (e.g., skewness of distribution) of brain-wave communica-
tions. To dissect the complex interactions among multiple brain rhythms, we
construct positively- and anti-correlated networks where network nodes represent
five different brain rhythms, and links represent the degree of cross-correlation
between corresponding brain rhythms (Fig. 5). The network link strength corre-
sponds to the group averaged degree of cross-correlation obtained for different
pairs of brain rhythms, and is scaled with the line thickness and color (thicker and
darker lines represent stronger links). Coexistence of both positively- and anti-
correlated networks for each physiologic state demonstrates a transient nature of
brain wave communication as it can switch on/off at different times within the
same physiologic state. The emergence of different sub-clusters in both networks
indicates reorganization in network communications between certain brain
rhythms (clustered nodes) and their role in physiologic regulation.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data we used in this work are pre-existing de-identified multi-channel EEG
recordings and sleep-stage annotations from the EU SIESTA database. The detailed
protocol of the SIESTA database can be found in Klösch et al.27. All participants provided
written informed consent. Data use and protocol were approved by the Boston University
Charles River Campus Institutional Review Board (IRB protocol number 3380X). Data
can be obtained upon request through the advisory board of the SIESTA Group (www.
thesiestagroup.com).

Code availability
For data analyses standard MATLAB subroutines (spectral power, window averaging,
cross-correlation analysis) are used in particular order as explained in the Methods
section.
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