Biological effects of pulsating magnetic fields: role of solitons


" In this paper, we analyze biological effects produced by magnetic fields in order to elucidate the physical mechanisms, which can produce them. We show that there is a chierarchy of such mechanisms and that the mutual interplay between them can result in the synergetic outcome. In particular, we analyze the biological effects of magnetic fields on soliton mediated charge transport in the redox processes in living organisms. Such solitons are described by nonlinear systems of equations and represent electrons that are self-trapped in alpha-helical polypeptides due to the moderately strong electron-lattice interaction. They represent a particular type of disssipativeless large polarons in low-dimensional systems. We show that the effective mass of solitons in the is different from the mass of free electrons, and that there is a resonant effect of the magnetic fields on the dynamics of solitons, and, hence, on charge transport that accompanies photosynthesis and respiration. These effects can result in non-thermal resonant effects of magnetic fields on redox processes in particular, and on the metabolism of the organism in general. This can explain physical mechanisms of therapies based on applying magnetic fields."


Last modified on 30-May-16

/ EMMIND - Electromagnetic Mind